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Abstract

Solutions are presented for a crack kinking out of the crack plane in a generally anisotropic elastic body under
two-dimensional deformation. Based on Stroh formalism, a system of singular integral equations governing the
kinking crack with small kink length is given in a simple, straightforward form. The explicit expressions of the stress

intensity factors, T-stresses, and energy release rates at the kinked crack tip are presented in terms of some
nondimensional coe�cients together with the stress intensity factors, T-stresses, and the coe�cients of the third term
acting on the main crack tip prior to crack kinking. The nondimensional coe�cients depend on kink angle and
material constants, but not on kink length. The energy release rate ratio which may characterize the competition

along di�erent crack growth directions is provided. The role of T-stresses and the third-term applied at the main
crack ®eld are determined which can be signi®cant in the kinking and the stability of the kinked crack. Based on the
energy release rate fracture criterion, the stability condition of the kinked crack is derived. The in¯uences of

anisotropy and loading mixity on the implications of crack kinking behavior is also given. The results for
monoclinic materials with symmetry plane at x 3 � 0 are derived from general results. Numerical results for the
stress intensity factors, T-stresses at the kinked acrack tip and the energy release rate ratio for some special cases

are provided. The dimensionless coe�cients for crack kinking of orthotropic materials at the right angle to the main
crack plane are tabulated. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Crack kinking; Anisotropic materials; Stress intensity factor; Energy release rate; T-stress; g-term; Fracture criterion;

Singular integral equations; Stability of kinked crack

1. Introduction

The direction of crack kinking can be one of the major factors in determining the residual strength of
the structural components. Therefore, proper prediction of the kinked direction upon crack initiation
and growth is of great importance in structural analysis. In order to assess whether the crack will extend
in the crack plane or advance by kinking out of the crack plane, the stress ®eld near the kink tip and
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associated fracture parameters need to be quanti®ed. Crack kinking analyses for isotropic materials have
been extensively carried out. Khrapkov (1971, 1998), Bibly and Cardew (1975) and Melin (1994), etc.
used the Mellin transform to obtain the stress intensity factors in front of the kinked tip for in®nitesimal
kink. Using Muskhelishvili's complex stress functions and perturbation methods, Banichuk (1970),
Gol'dstein and Salganik (1974), Cotterell and Rice (1980), etc. determined the stress intensity factors for
small kinked angle and in®nitesimal kinks. Cotterell and Rice (1980) also considered the e�ect of the T-
stress on the kinked stress intensity factors. Sumi et al. (1983) utilizing the perturbation technique and
an alternating method developed a solution for a ®nite geometry. Lo (1978), Hayashi and Nemat-Nasser
(1981), He and Hutchinson (1989) and He et al. (1991) calculated the stress intensity factors by the use
of singular integral methods with dislocations and identi®ed the role of T-stress on the kinking behavior
in isotropic materials.

For anisotropic materials using Lekhnitskii's formalism and dislocation technique, Miller and Stock
(1989) formulated the kinking problem in generally anisotropic materials using Lekhnitskii's complex
potential and calculated stress intensity factors for orthotropic materials under remote tension loading.
Obata et al. (1989) analyzed in-plane deformation and calculated stress intensity factors and energy
release rate at the kinked crack tip due to stress intensity factors of the main crack for orthotropic
materials, and Selvarathninam (1995) analyzed the crack kink behavior under uniform loading at
in®nity in orthotropic materials. Gao and Chiu (1992) using the Stroh formalism obtained the
perturbation solution for in®nitesimal kink and small kink angle under in-plane deformation. Suo et al.
(1991) obtained the stress intensity factors for orthotropic materials with kink angle normal to the crack
plane.

In this paper, the Stroh formalism of anisotropic elasticity combined with singular integral equation
approach are used to determine the stress intensity factors and energy release rate for arbitrary kink
angles including the e�ects of T-stress and the third-term. The stability condition of the kinked crack is
derived from the energy release rate fracture criterion. The T-stresses for the kinked crack in terms of
stress intensity factors and T-stresses prior to thinking are also formulated.

2. General formulation for kinked crack tip ®eld

The attention focuses on a kinked crack in an anisotropic elastic body under two-dimensional
deformation. Referring a ®xed coordinate system x1, x2, x3, the strain±stress law is

eee � s 0sss �2:1�
where

eee � �e1, e2, g23, g31, g12 �T, sss � �s11, s22, s23, s31, s12 �T

s 0 � �s 0ij � are reduced compliance coe�cients de®ned by s 0ij � sij ÿ si3sj3=s33, �i, j, � 1, 2, 4, 5, 6).
Consider a crack with kink segment of length a kinking out of the crack plane at an angle o in a

linear anisotropic body as shown in Fig. 1. When a is small compared with all in-plane geometric
lengths, including the length of the main crack, the parent crack is taken as semi-in®nite and stresses
remotely asymptote to

sab �
X3
i�1

ki�������
2pr
p siab

ÿ
y;s 0ij

�� T1da1db1 � T3da3db1 �
X3
i�1

������
2r

p

r
gitiab

ÿ
y;s 0ij

��O�r1�, sab 6�s33 �2:2�

where r and y are the cylindrical coordinate centered at the main crack tip; k � �k2, k1, k3�T,
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T � �T1, 0,T3�T, g� �g2, g1, g3�T are stress intensity factors, T-stresses and real coe�cients of the third
term ( g-term) acting the main crack tip for a � 0: The T-stress terms, T1 and T3, are constant stress
terms for s11 and s13 prior to kinking. siab and tiab depend on y and s 0ij; T and g depend on s 0ij, loading,
and geometry. In other words, for small a, the actual geometry of the cracked body and the applied
loads can be represented by the remote loading k, T, g, etc.. Here, k, T and g are known which have
been determined from the actual body geometry and loading (see Yang and Yuan, 1999). In what
follows, attention is focused on the case where the crack surfaces are traction free under remote loading
k, T and g: The stress ®eld at the tip of the kinked crack is the classical ®eld with conventional stress
intensity factors, k 0 � �k 02, k 01, k 03�T and T-stresses, T 0 � �T 01, 0, T 03�T: Based on the linearity and
dimensional consideration, it can be shown that for small a, k 0 and T 0 are related to the factors k, T,
and g applied at the parent crack tip when a � 0 by24 k 02

k 01
k 03

35 �
24 c22 c21 c23
c12 c11 c13
c32 c31 c33

3524 k2
k1
k3

35� ���
a
p

T1

24 b21
b11
b31

35� ���
a
p

T3

24 b23
b13
b33

35� a

24 h22 h21 h23
h12 h11 h13
h32 h31 h33

3524 g2
g1
g3

35
�O�a3=2� �2:3�

�
T 01
T 03

�
� 1���

a
p

�
d12 d11 d13
d32 d31 d33

�24 k2
k1
k3

35� � e11 e13
e31 e33

��
T1

T3

�
�O

ÿ ���
a
p �

�2:4�

where the coe�cients, cij, bij, hij, dij, and eij, are functions of o and s 0ij, O represents the other higher-
order terms.

The above expressions of k 0 and T 0 can be derived from a system of integral equations governing the
kinked crack-tip ®eld and the values of cij, bij, hij, dij, and eij can be calculated by solving the integral

Fig. 1. A kinked crack with length a emanating from the main crack with angle o:
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equations (see later sections). For a monoclinic material with the symmetry plane at x3 � 0, the in-plane
deformation is separated from the anti-plane deformation. Therefore, Eqs. (2.3) and (2.4) become:

For in-plane deformation,�
k 02
k 01

�
�
�
c22 c21
c12 c11

��
k2
k1

�
� ���

a
p

T1

�
b21
b11

�
� a

�
h22 h21
h12 h11

��
g2
g1

�

T 01 � �d12k2 � d11k1�=
���
a
p � e11T1 �2:5�

For anti-plane deformation,

k 03 � c33k3 �
���
a
p

T3b33 � ah33g3

T 03 � d33k3=
���
a
p � e33T3 �2:6�

For in-plane deformation in isotropic materials, the values of cij and bi1 can be calculated using an
integral equation method described by He and Hutchinson (1989). For the isotropic case, cij and bi1
depend on o only, the values of cij are given by Hayashi and Nemat-Nasser (1981), He and Hutchinson
(1989) and Melin (1994), bi1 by He et al. (1991). For in-plane deformation in anisotropic solids, Miller
and Stock (1989) and Obata et al. (1989) calculated cij: For orthotropic solids, cij�o � ÿp=2; s 0ij � are
given by Suo et al. (1991).

In this paper, the Stroh formalism of anisotropic elasticity combined with integral equation approach
are used to determine the stress intensity factors for arbitrary kink angles including the e�ects of T-
stresses and g-term on the stress intensity factors. As a ®rst step, a system of integral equations
governing the kinked crack problem is constructed using a basic solution for a line dislocation
interacting with a semi-in®nite crack. The basic solution may be obtained by superimposing the
following two solutions:

(a) A solution for a line dislocation perpendicular to x1 ÿ x2 plane in an in®nite plane without crack;
(b) A disturbed solution due to the presence of the crack. For the solution, the opposite tractions
deduced by the line dislocations are applied to the crack surfaces.

To model the crack kinking behavior, the kinked segment of length a is replaced by a continuous
distribution of dislocations. The net tractions on the kinked surfaces resulting from distribution of the
dislocations and the remote loading should be zero. This results in a system of singular integral
equations.

3. Crack kinking analysis

In the Stroh formalism, the solution (a) for a line dislocation with Burgers vector Ãb located at
�x10, x20� in an in®nite plane without crack is given by

FFF�z� � 1

2p
Bhln�zÿ z0�iBÿ1q0 �3:1�

u � Re
�
ABÿ1FFF�z�

�
� 1

2p
Re
h
Ahln�zÿ z0�iBÿ1q0

i
�3:2�
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t1 � �s11, s12, s13 �T� ÿRe
�
FFF,2

�
, t2 � �s12, s22, s23 �T� Re

�
FFF,1

� �3:3�

where

q0 � LÃb

hln�zÿ z0�i � diag
�
ln�z1 ÿ z10 �, ln�z2 ÿ z20�, ln�z3 ÿ z30 �

�
za � x1 � pax2, za0 � x10 � pax20 �3:4�

FFF is the complex stress function or complex potential, pa, A, B are the Stroh eigenvalues and matrices
(Ting, 1996). They depend on elastic constants only. L � ÿ2iBBT is a real, symmetric matrix. From Eq.
(3.1), the traction on the plane x2 � 0 with unit normal �0, 1, 0�T is

t2�x1� � Re
�
FFF 0�z�����

x 2�0
, �3:5a�

FFF 0�z� � 1

2p
Bh 1

zÿ z0
iBÿ1q0 �3:5b�

Here, the prime denotes the derivative with respect to the associated arguments.
The solution (b) is investigated next. Consider a semi-in®nite crack located on plane x2 � 0 and x1 <

0: The traction ÿt2 from Eq. (3.5a) is applied on the lower crack surface and t2 on the upper crack
surface. Solving this problem leads to a Hilbert equation. The derivative of the complex potential for
the semi-in®nite crack with the prescribed tractions on the faces can be written, in Stroh formalism,

FFF 0�z� � ÿ 1

4p

24Bh1ÿ
���������
z0=z
p

zÿ z0
iBÿ1 �

X3
b�1

Bh1ÿ
������
�zb0

p
=z

zÿ �zb0
iYb

35q0 �3:6�

Yb � Bÿ1 ÅBIb ÅB
ÿ1 �3:7�

where

I1 � diag�1, 0, 0�, I2 � diag�0, 1, 0�, I3 � diag�0, 0, 1�

h1ÿ
���������
z0=z
p

zÿ z0
i � diag

�
1ÿ ������������

z10=z1
p

z1 ÿ z10
,
1ÿ ������������

z20=z2
p

z2 ÿ z20
,
1ÿ ������������

z30=z3
p

z3 ÿ z30

�

h1ÿ
�����������
�zb0=z

p
zÿ �zb0

i � diag

"
1ÿ �������������

�zb0=z1
p

z1 ÿ �zb0
,
1ÿ �������������

�zb0=z2
p

z2 ÿ �zb0
,
1ÿ �������������

�zb0=z3
p

z3 ÿ �zb0

#

Superimposing the two solutions, (3.5b) and (3.6), the derivative of the complex stress function and
displacement for the line dislocation interacting with the traction-free crack are given by
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FFF 0�z� � FFF 00 � FFF 0T �
1

2p

24Bh 1

zÿ z0
iBÿ1 ÿ 1

2
Bh1ÿ

���������
z0=z
p

zÿ z0
iBÿ1 ÿ 1

2

X3
b�1

Bh1ÿ
�����������
�zb0=z

p
zÿ �zb0

iYb

35q0 �3:8a�

u � Re
�
ABÿ1FFF�z�

�
�3:8b�

where the subscripts 0 and T denote the solutions Eqs. (3.5) and (3.6) for line dislocation and crack with
prescribed tractions, respectively. The expression for this fundamental solution FFF�z� is readily obtained
by integrating Eq. (3.8a) with respect to z.

The next step in the analysis involves the formulation of the kinked crack shown in Fig. 1. This is
accomplished by simulating the kinked segment by a continuous distribution of dislocations. It is
convenient to use the cylindrical coordinate system �r, y, x3� where

x1 � rcos y, x2 � rsin y

x10 � r0cos o, x20 � r0sin o, 0Rr0Ra

and r0 is the distance from the origin to �x10, x20).
For a single line dislocation located at �x10, x20� on the segment, the complex potential is given by

Eq. (3.8a) in which

za � r�cos y� pasin y�

za0 � r0�cos o� pasin o�, 0Rr0Ra �3:9�

Replacing q0 by qD�r0�dr0 in Eq. (3.8a) and integrating with respect to r0 from 0 to a, we get the
potential for the distributions of dislocation interacting with the crack given by the integral expansion

FFF 0D�z� �
1

2p

�a
0

24Bh 1

zÿ z0
iBÿ1 ÿ 1

2
Bh1ÿ

���������
z0=z
p

zÿ z0
iBÿ1 ÿ 1

2

X3
b�1

Bh1ÿ
�����������
�zb0=z

p
zÿ �zb0

iYb

35qD�r0� dr0 �3:10�

where qD�r0� is the dislocation density.
For the crack kinking problem, the dislocation density qD�r0� is unknown. However, the unknown

function qD�r0� must lead to the traction-free condition along the kinked crack surfaces

tyjy�o �
ÿ
tD
y � tL

y

�jy�o � 0, 0 < r < a �3:11�

where ty is the traction on y � constant, the superscripts (or subscripts) D and L denote the quantities
induced by the distribution of dislocations and the loading applied to the main crack, respectively.

The traction vector ty on a radial plane y � constant is given by

ty � Re

�
@FFF
@r

�
�3:12�

Denote the complex potential for the main crack tip by FFFL under loading k, T, and g: Then
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FFFL �
����
2

p

r
Bh ���

z
p iBÿ1k� BhziBÿ1g0 �

2

3

����
2

p

r
Bhz3=2iB ÿ1g�O�z2� �3:13�

where T�ÿRe�BhpiBÿ1g0� and Re�g0� � 0:
From Eqs. (3.10), (3.12) and (3.13)

tDo � tD
y jy�o �

1

2p

�a
0

24 I

rÿ r0
ÿ 1

2

I

r� ������
rr0
p ÿ 1

2

X3
b�1

Re

"
Bh 1

r� ���������������
rr0 �Bb=B

p iYb

#35qD�r0� dr0 �3:14�

tL
o �

1�������
2pr
p Re

�
Bh ���

B
p iBÿ1

�
kÿ sin oT �

������
2r

p

r
Re
�
BhB3=2iBÿ1

�
g�O�r2 � �3:15�

where Ba�cos o� pasin o, r �
�����������������
x 2
1 � x 2

2

q
, r0 �

��������������������
x 2
10 � x 2

20

q
:

Substituting Eqs. (3.14) and (3.15) into Eq. (3.11) leads to

1

2p

�a
0

24 I

r0 ÿ r
� 1

2

I

r� ������
rr0
p � 1

2

X3
b�1

Re

"
Bh 1

r� ���������������
rr0 �Bb=B

p iYb

#35qD dr0

� 1�������
2pr
p Re

�
Bh ���

B
p iBÿ1

�
kÿ sin oT �

������
2r

p

r
Re
�
BhB3=2iBÿ1

�
g�O�r2� �3:16�

This is a system of singular integral equations for the dislocation density qD�r0� and it governs the crack
kinking problem. It is convenient to introduce the nondimensional variables x ant t such that

r � a

2
�1� x�, r0 � a

2
�1� t� �3:17�

Assume qD has the form

qD �
2p�1� t�ÿs�1ÿ t�ÿ1=2q�t����

a
p �3:18�

where q�t� is a unknown function bounded on ÿ1RtR1 (Note that q�t� has dimension of the stress
intensity factor), ÿ1/2 and ÿs�o; s 0ij � are the stress singularity at the kink tip and the kink corner,
respectively. Then the integral equation (3.16) is written as�1

ÿ1

I

tÿ x
� 1

2

I

1� x�
�����������������������������1� x��1� t�

p
� 1

2

X3
b�1

Re

"
Bh 1

1� x� ��������������������������������������1� x��1� t��Bb=B
p iYb

#
q�t� dt

�1� t�s�1ÿ t�1=2

� 1�����������������
p�1� x�

p Re
�
Bh ���

B
p iBÿ1

�
kÿ ���

a
p

Tsin o� a

������������
1� x

p

r
Re
�
BhB3=2iBÿ1

�
g �3:19�

Eq. (3.19) can be rewritten in a standard form
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�1
ÿ1

w�t�q�t� dt

tÿ x
�
�1
ÿ1

K�x, t�w�t�q�t� dt � f�x�, ÿ 1 < x < 1 �3:20�

where the ®rst integral on the left-hand side is the dominant part,

w�t� � �1� t�ÿs�1ÿ t�ÿ1=2 �3:21�
The matrix K�x, t� is the known function which contains the second and the third terms in the integrand
in Eq. (3.19), f �x� consists of the k-term, T-term, g-term, etc.. The equation can be solved using di�erent
numerical techniques as given by Erdogan et al. (1973), He and Hutchinson (1989) and Erdogan and
Gupta (1972). In these approaches, the unknown function q�t� is expanded in terms of Chebychev
polynomials or Jacobi polynomials with unknown coe�cients. This results in a system of linear
algebraic equations for q�t�: In this paper, a series of Chebychev polynomial is used, s � 1=2 and the
condition q�ÿ1� � 0 are imposed at the kinked corner. In calculation the series is truncated at (N +
1)th term �N � 120). Comparing the results with the existing results given by Melin (1994) and
Khrapkov (1998) for isotropic materials and Suo et al. (1991) for orthotropic materials, a very good
agreement has been achieved.

Since the integral equation is linear in q�t�, the solution for q�t� can be obtained by superposition of
the solutions due to k-term, T-term, and the other higher-order terms. From Eq. (3.19) or Eq. (3.20),
the solution q�t� can be expressed by

q�t� � k2q�1�2 �t� � k1q�1�1 �t� � k3q�1�3 �t� �
���
a
p

T1q
�2�
1 �t� �

���
a
p

T3q�2�3 �t� � a
X3
i�1

q�3�i �t�gi �3:22�

where the eight terms represent the contribution to q�t� due to k2, k1, k3, T1, T3, g i respectively. The
superscripts (i ), i = 1, 2, 3 denote the terms created by k-term, T-term, and g-term, respectively. q

�1�
2 ,

q�1�1 , q�1�3 can be obtained from solving integral equations�1
ÿ1

w�t�q�t�
tÿ x

dt�
�1
ÿ1

K�x, t�w�t�q�t� dt � 1�����������������
p�1� x�

p Re
�
Bh ���

B
p iBÿ1

�
k �3:23�

by setting k � �1, 0, 0�T, �0, 1, 0�T and �0, 0, 1�T in Eq. (3.23), respectively, while q�2�1 and q�2�3 can be
calculated from solving the integral equation�1

ÿ1

w�t�q�t�
tÿ x

dt�
�1
ÿ1

K�x, t�w�t�q�t� dt � ÿ ���
a
p

Tsin o �3:24�

by choosing T � �1, 0, 0�T and �0, 0, 1�T in Eq. (3.24), respectively. q�3�2 , q�3�1 , q�3�3 are determined from�1
ÿ1

w�t�q�t�
tÿ x

dt�
�1
ÿ1

K�x, t�w�t�q�t� dt � a

������������
1� x

p

r
Re
�
BhB3=2iBÿ1

�
g �3:25�

with selecting g � �1, 0, 0�T, �0, 1, 0�T and �0,0,1�T, respectively.
The contributions to q�t� due to other higher-order terms can be determined in a similar procedure.

The solution of q�t� can be used to calculate the stress intensity factors, T-stresses, and energy release
rate as given in the following sections.

Note that the solution for the integral equations is valid if the crack surfaces are traction-free for
both the main crack and kinked crack. This requires that the crack surfaces are open. For the main
crack, the displacements due to the singular term are expressed by
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u �
����
2

p

r
Re
�
Ah ���

z
p iBÿ1

�
k �3:26�

It follows that the crack opening displacement

Du2 � u2�r, p� ÿ u2�r,ÿ p� � 2

������
2r

p

r
�Lÿ1k�2 �3:27�

where [ ]2 denotes the second element of the vector inside the bracket. The open crack tip implies that
�Lÿ1k�2r0: Similarly, for the kinked crack, the traction-free condition on the crack tip requires�

Lÿ1o k 0
�
2r0 �3:28�

where Lÿ1o is the matrix referred to the coordinate �x 01, x 02, x 03� system located at the kinked crack tip
shown in Fig. 1.

4. Stress intensity factors at the kinked tip

The stress intensity factors at the kink tip are de®ned by

k 0 � lim
r4a

�������������������
2p�rÿ a�

p 8<: sry
syy
s3y

9=;
y�o

, r > a �4:1�

Since8<:sry
syy
s3y

9=;
y�o

� OOOtyjy�o, OOO �
24 cos o sin o 0
ÿsin o cos o 0
0 0 1

35 �4:2�

k 0can be expressed by

k 0 � lim
r4a

�������������������
2p�rÿ a�

p
OOOtyjy�o � lim

x41

��������������������
pa�xÿ 1�

p
OOOtyjy�o, x > 1 �4:3�

It can be shown that as x41, the contribution to k 0 only comes from the dominant term in the
expression of tyjy�o, the limiting value can be evaluated using a technique given by Muskhelishvili
(1953) and

lim
x41

tyjy�o � lim
x41

1���
a
p

�1
ÿ1

q�t� dt

�xÿ t��1� t�s�1ÿ t�1=2
� pq�1�

2s
�����������������
a�xÿ 1�

p �4:4�

Hence

k 0 � p
���
p
p
2s

OOOq�1� �4:5�

Once the numerical solutions q�1�2 , q�1�1 , q�1�3 , q�2�1 , q�2�3 , q�3�2 , q�3�1 , and q�3�3 are known from (3.23)±(3.25),
according to Eqs. (3.22) and (4.5), k 0 can be expressed in terms of k, T, and g in the form
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24 k 02
k 01
k 03

35 �
24 c22 c21 c23
c12 c11 c13
c32 c31 c33

3524 k2
k1
k3

35� ���
a
p

T1

24 b21
b11
b31

35� ���
a
p

T3

24 b23
b13
b33

35� a

24 h22 h21 h23
h12 h11 h13
h32 h31 h33

3524 g2
g1
g3

35 �4:6�

or

k 0 � ck� ���
a
p

bT � ahg �4:7�
where

c � p
���
p
p
2s

OOO
h
q
�1�
2
�1�, q

�1�
1
�1�, q

�1�
3
�1�
i
, �4:8�

b � �b1, 0, b3 �, b1 �
24 b21
b11
b31

35 � p
���
p
p
2s

OOOq�2�1
�1�, b3 �

24 b23
b13
b33

35 � p
���
p
p
2s

OOOq�2�3
�1�, �4:9�

h � p
���
p
p
2s

OOO
h
q�3�2
�1�, q�3�1

�1�, q�3�3
�1�
i

�4:10�

Following a similar manner, k 0 induced by other higher-order terms can be obtained.

5. T-stresses at the kinked tip

Referring to the coordinate system �x 01, x 02, x 03� attached to the kinked tip shown in Fig. 1, the
asymptotic stress ®eld near the tip is

s 0ab � s 0 �0�ab

ÿ
r 0,y 0

�
� T 01da1db1 � T 03da3db1 �O

ÿ ����
r 0
p �

, sab 6�s33 �5:1�

where the superscript prime denotes the quantities referred to the �x 01, x 02, x 03� system, s 0 �0�ab is the singular
term with s 0 �0�abA1=

����
r 0
p

, r 0 �
��������
x 0 21

q
�x 0 22 , r 0cos y 0 �x 01, r 0sin y 0 �x 02:

By the de®nition of T-stresses

T 01 � lim
r 040

�
s 011 ÿ s 0 �0�11

�
jy 0�0, T 03 � lim

r 040

�
s 031 ÿ s 0 �0�31

�
jy 0�0 �5:2�

Note that the constant term of s 012 is zero. Let srr, sry, sr3 be the cylindrical components of the stress on
r = constant. Then24s 011

s 021
s 031

35
y�0

�
24 srr
sry
sr3

35
y�o

, r > a �5:3�

Thus

T 01 � lim
r4a

�
srr ÿ s�0�rr

�
jy�o, T 03 � lim

r4a

�
sr3 ÿ s�0�r3

�
jy�o �5:4�

where s�0�rr and s�0�r3 are the leading terms of srr and sr3, respectively. Because

S. Yang, F.-G. Yuan / International Journal of Solids and Structures 37 (2000) 6635±66826644



24srr
sry
sr3

35 � OOO�y�tr OOO�y� �
24 cos y sin y 0
ÿsin y cos y 0
0 0 1

35 �5:5�

and

tr � ÿ1
r
Re

�
@FFF
@y

�
, FFF � FFFD � FFFL �5:6�

Finally, we have the expression, via Eqs. (5.3), (5.5), (5.6) and (3.17)

�srr, sry, sr3 �Tjy�o �
OOO�o����

a
p RefBhp�o�iBÿ1

�1
ÿ1

w�t�q�t�
tÿ x

dt

�1
2

Bhp�o�iBÿ1
�1
ÿ1

w�t�q�t�
1� x�

�����������������������������1� x��1� t�
p dt

�1
2

X3
b�1

�1
ÿ1

Bh p�o�
1� x� ��������������������������������������1� x��1� t�Bb=B

p iYbw�t�q�t� dt, x > 1

ÿ 1�����������������
p�1� x�

p Bhp�o� ���
B
p iBÿ1k� ���

a
p

Tcos og �5:7�

h
s�0�rr , s

�0�
ry , s

�0�
r3

iT

jy�o �
OOO�o����

a
p Re

"
Bhp�o�iBÿ1 pq�1�

2s
�����������
xÿ 1
p

#
, x > 1 �5:8�

where

hp�o�i � diag
�
p1�o�, p2�o�, p3�o�

�
pa�o� � ÿsin o� pacos o

cos o� pasin o
, Ba � cos o� pasin o �5:9�

From Eqs. (5.4), (5.7) and (5.8),

T 0 � �T 01, 0, T 03�T� OOO�o����
a
p

�
mÿ 1������

2p
p Re

�
Bhp�o� ���

B
p iBÿ1k

�
� ���

a
p

Tcos o
�

�5:10�

where

m � RefBhp�o�iBÿ1 lim
x41

"�1
ÿ1

w�t�q�t�
tÿ x

dtÿ pq�1�
2s

�����������
xÿ 1
p

#

�1
2

Bhp�o�iBÿ1
�1
ÿ1

w�t�q�t�
2�

����������������
2�1� t�

p dt
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�1
2

X3
b�1

�1
ÿ1

Bh p�o�
2� �������������������������

2�1� t�Bb=B
p iYbw�t�q�t� dtg �5:11�

Eq. (5.10) provides the evaluation of T-stress from the radial stress at the front of the kinked tip �y 0 �
0�: With Eqs. (5.10) and (3.22), T 0 is related to k and T by the relation24T 01

0
T 03

35 � 1���
a
p

24 d12 d11 d13
0 0 0
d32 d31 d33

3524 k2
k1
k3

35�
24 e11 0 e13
0 0 0
e31 0 e33

3524T1

0
T3

35 �5:12�

or

T 0 � dk=
���
a
p � eT

where

d � OOO
nh

m
�1�
2 , m

�1�
1 , m

�1�
3

i
ÿ Re

�
Bhp�o� ���

B
p iBÿ1

�o

e � OOO
nh

m
�2�
1 , 0, m

�2�
3

i
� �e1, 0, e3 �cos o

o
e1 � �1, 0, 0�T, e3 � �0, 0, 1�T

m�1�2 , m�1�1 , m�1�3 , m�2�1 , m�2�3 are evaluated from Eq. (5.11) by choosing q�t� � q�1�2 , q�1�1 , q�1�3 , q�2�1 , q�2�3 ,
respectively.

For simplicity, Eq. (5.12) can be reduced to the form in Eq. (2.4). Note that the T-stress can also be
calculated from the radial stress on the ¯anks of the kinked crack.

6. Energy release rate at the kinked tip

The energy release rate for the main crack extension in x1-direction prior to kinking is

G0 � G�o�jo�0
a40

� 1

2
kTLÿ1k � jkj

2

2
nTLÿ1n �6:1�

where k � jkjn, n��sin f sin c, sin f cos c, cos c�T, jkj �
�����
k2
2

q
�k2

1 �k2
3 ,

tan c � k2
k1

, cos f � k3
jkj �6:2�

n is the direction cosine of k in the �k2, k1, k3� space. c is a measure of relative magnitude of mode-II to
mode-I of the loading on the main crack; f is the ratio of magnitude of mode-III to the norm of the
stress intensity factor at the main crack, Lÿ1�� Re�iABÿ1�� is a tensor of rank two referred to �x1, x2,
x3� system,

The energy release rate of the crack kinking at y � o is

G�o� � 1

2
k 0 TLÿ1o k 0 �6:3�
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where

Lÿ1o � OOO�o�Lÿ1OOOT�o�

k 0 � ck� ���
a
p

bT � ahg �6:4�
From Eqs. (6.3) and (6.4)

G�o� � 1

2
kTcTLÿ1o

ÿ
ck� 2

���
a
p

bT � 2ahg
�
� a

2
TTbTLÿ1o bT �6:5�

The ratio of the two energy release rates is obtained from Eqs. (6.1) and (6.5) as

G�o�
G0
� nTcTLÿ1o �cn� 2bbbb� 2haaa� � bbbTbTLÿ1o bbbb

nTLÿ1n
�6:6�

where

bbb � T
���
a
p
jkj �

�
b1, 0, b3

�T
, aaa � ag

jkj � �a1, a2, a3 �
T:

The fracture criterion based on energy release rate may be stated as follows: the kinked crack will
propagate along the direction y � o if

G�o� � Gc

ÿ
o, c 0, f 0

� �6:7�

Here G�o� is the energy release rate which may be calculated from Eq. (6.5), Gc is the experimentally-
determined fracture toughness which depends on the kink angle o and the loading phase angles, c 0, and
f 0 of k 0:

If crack is kinked at y � o, then it raises a critical question: Whether the kinked crack will tend to
arrest or grow further to damage the structure. Following the energy release rate fracture criterion, the
stability conditions of the kinked crack may be stated as

@G�o�
@a

< 0, kinked crack is stable

@G�o�
@a

> 0, kinked crack is unstable �6:8�

This means that the kinked crack is stable if G�o� decreases with increases a, and the kinked crack is
unstable if G�o� increases as the crack grows (see He and Hutchinson, 1989). The dual condition of Eqs.
(6.7) and (6.8) determines the kinking stability. From Eq. (6.5)

@G�o�
@a

� jkj
2

2a

�
nTcTLÿ1o �bbbb� 2haaa� � bbbTbTLÿ1o bbbb�O�a3=2 �

�
�6:9�

Eq. (6.9) may be written in more useful form as

@G�o�
@a

� jkj
2

2l

"
nTcTLÿ1o

 
b Äbbb������
a=l
p � 2hÄaaa

!
� ~bbb

T
bTLÿ1o b ~bbb�O

� ������
a=l

p �#
�6:10�
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where

~bbb �
��
l
p

T=jkj �
h

~b1, 0, ~b3
iT

, ~aaa � lg=jkj � �~a1, ~a2, ~a3 �T, �6:11�

l is a characteristic length of the cracked body. For example, l can be taken as the main crack length; ~bbb
and ~aaa are nondimensional constant vectors which depend on the geometry of the cracked body and the
type of loading and are independent of the kinking length a and the loading magnitude. For mode-I
loading, ~b1 is usually called a biaxial parameter. Then stability condition of the kinked crack (6.8) with
(6.10) becomes

nTcTLÿ1o

 
b Äbbb������
a=l
p � 2h ~aaa

!
� ~bbb

T
bTLÿ1o b ~bbb < 0 �6:12�

It is worth noting that the stability condition is independent of the loading magnitude. This is one of the
motives why b and h are calculated by this paper. ~bbb and ~aaa (or T and g� can be determined by using
path-independent integrals (see authors' paper). Since a=l� 1, it follows from Eq. (6.12) that

nTcTLÿ1o b ~bbb < 0 if b ~bbb � O�1� �6:13�

nTcTLÿ1o h ~aaa < 0 if b ~bbb � o

� ������
a=l

p �
�6:14�

For other cases, b ~bbb � O� ������
a=l
p �, Eq. (6.12) has to be used. Eq. (6.13) covers many cases. However, note

that

b � 0 at o � 0

b � O�o� at o� 1

~bbb10 when T10

In these cases, the stability condition is given by Eq. (6.14) or (6.12). Eqs. (6.12)±(6.14) can be applied
to any kinked angle o if the kinked crack tip is open. If Eq. (6.13) or Eq. (6.14) can be applied, the
stability condition is independent of a/l.

7. Stress intensity factors, T-stresses and energy release rate at the kinked tip in monoclinic material with
symmetry plane at x3 � 0

For general anisotropic materials, all three displacement components are coupled and depend on x1

and x2 only. The components, q1�t�, q2�t�, and q3�t� of dislocation density q�t�, have to be considered
simultaneously in the integral equation (3.19). However, for monoclinic materials with symmetry plane
at x3 � 0, the in-plane deformations are decoupled from the anti-plane deformation, we may consider
the in-plane deformation and the antiplane deformation, respectively. In this case, explicit expressions of
B, Bÿ1, and Lÿ1 are given by
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B �
24ÿp1 ÿp2 0
1 1 0
0 0 ÿ1

35, Bÿ1 � 1

p1 ÿ p2

24ÿ1 ÿp2 0
1 p1 0
0 0 p2 ÿ p1

35 �7:1�

Lÿ1 � s 011

2664
Im�p1 � p2� Im�p1p2� 0
Im�p1p2� Im

�
p1p2� �p1 � �p2 �

�
0

0 0
ÿ
ms 011

�ÿ1
3775 �7:2�

where

m � ÿs 044s 055 ÿ s 045s
0
45

�ÿ1=2 �7:3�

p1 and p2 are the roots of

s 011p
4 ÿ 2s 016p

3 � ÿ2s 012 � s 066
�
p2 ÿ 2s 026p� s 022 � 0 �7:4�

with positive imaginary part; p3 is the root of

s 055p
2 ÿ 2s 045p� s 044 � 0, Im�p3 � > 0: �7:5�

With these expressions, the system of integral equations (3.19) reduces to the following a pair of integral
equations (7.6) for in-plane deformation and an integral equation (7.7) for anti-plane deformation:�1

ÿ1

8<: I

tÿ x
� 1

2

I

1� x�
�����������������������������1� x��1� t�
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2
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Bh 1

1� x� ��������������������������������������1� x��1� t��Bb=B
p iYb

#

�
9=; q�t� dt

�1� t�s�1ÿ t�1=2

� 1�����������������
p�1� x�

p Re
�
Bh ���

B
p iBÿ1

�
kÿ ���

a
p

Tsin o� a

������������
1� x

p

r
Re
�
BhB3=2iBÿ1

�
g�O�a2� �7:6�

�1
ÿ1

(
1

tÿ x
� 1

2

1

1� x�
�����������������������������1� x��1� t�

p � 1

2
Re

"
1

1� x�
���������������������������������������1� x��1� t��B3=B3

p #)
q3�t� dt

�1� t�s�1ÿ t�1=2

� 1�����������������
p�1� x�

p Re
ÿ �����

B3
p �

k3 ÿ
���
a
p

T3sin o� a

������������
1� x

p

r
Re
�
B3=23

�
g3 �7:7�

where q � �q1, q2�T, k � �k2, k1�T, g � �g2, g1�T

Yb � Bÿ1 ÅBIb ÅB
ÿ1
, b � 1, 2 �7:8�

B, Yb, I, Ib are 2 � 2 matrices obtained by deleting the third row and the third column in the
corresponding matrices (3.7). It is clear that q1, q2 are independent of k3 and T3, and q3 is independent
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of k1, k2, T1, g1, g2. In this case,

c23 � c13 � c32 � c31 � 0, b31 � b23 � b13 � 0

h23 � h13 � h32 � h31 � 0, d13 � d32 � d31 � 0

e13 � e31 � 0 �7:9�
Therefore, the expressions of k 0 in Eq. (4.6) and T 0 in Eq. (5.12) can be simpli®ed.

7.1. In-plane deformation

The 3� 3 matrices c, h, de®ned before reduce to 2� 2 matrices; the matrices b and d reduce to two-
dimensional column and row vectors respectively; e reduces to a scalar. Thus�

k 02
k 01

�
�
�
c22 c21
c12 c11

��
k2
k1

�
� ���

a
p

T1

�
b2
b1

�
� a

�
h22 h21
h12 h11

��
g2
g1

�
�7:10�

T 01 �
d2k2 � d1k1���

a
p � eT1 �7:11�

or

k 0 � ck� ���
a
p

T1b� ahg �7:12�

T 01 �
dTk���
a
p � eT1 �7:13�

where, for simplicity, we have introduced the notations:

b � �b2, b1 �T, b2 � b21, b1 � b11,

d � �d2, d1 �T, d2 � d12, d1 � d11,

e � e11:

The energy release rates for the in-plane deformation lead to

G�o� � 1

2
kTcTLÿ1o

ÿ
c k� 2

���
a
p

T1b� 2ah g
�
� a

2
T 2

1 bTLÿ1o b �7:14�

G0 � G�o�jo�0
a40

� jkj
2

2
nTLÿ1n �7:15�

and the ratio

G�o�
G0
�
h
nTcTLÿ1o �c n� 2bb� 2haaa� � b2bTLÿ1o b

i
=�nTLÿ1n� �7:16�
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where n��sin c, cos c�T, tan c � k2=k1, jkj �
����������������
k2
1 � k2

2

q
: In this case, b3x1 and a3x1 de®ned before reduces

to a scalar and a two-dimensional vector given by

b �
���
a
p

T1

jkj , aaa � ag

jkj � �a1, a2 �
T

The expressions are also valid for degenerated materials. For isotropic materials,

Lÿ1 � Lÿ1o �
2�1ÿ n2�

E
I

Therefore, we have

G�o� � 1ÿ n2

E

h
kTcT

ÿ
ck� 2

���
a
p

T1b� 2ahg
�
� aT 2

1 bTb
i

�7:17�

G�o�
G0
� nTcT�cn� 2bb� 2haaa� � b2bTb �7:18�

In the absence of k3, for in-plane deformation of monoclinic materials, the criterion (6.7) becomes

G�o� � Gc

ÿ
o, c 0

� �7:19�

where c 0 � tanÿ1�k 02=k 01� is the phase angle of k 0 and Eq. (6.10) yields

@G�o�
@a

� jkj
2

2l

"
nTcTLÿ1o

 
b ~b������
a=l
p � 2h ~aaa

!
� ~b

2
bTLÿ1o b�O

� ������
a=l

p �#
�7:20�

The stability condition in Eq. (6.12) becomes

nTcTLÿ1o

 
b ~b������
a=l
p � 2h ~aaa

!
� ~b

2
bTLÿ1o b < 0 �7:21�

Here, ~b and ~aaa are given by ~b � ��
l
p

T1=jkj, ~aaa� lg=jkj � �~a1, ~a2�T:
Eq. (7.21) can be simpli®ed into

nTcTLÿ1o b ~b < 0, if b ~b � O�1� �7:22�

nTcTLÿ1o h ~aaa < 0, if b ~b � o

� ������
a=l

p �
�7:23�

For mode-I,

�c21, c11 �TLÿ1o b ~b < 0, if b ~b � O�1� �7:24�

�c21, c11 �TLÿ1o �h21, h11 �T ~a1 < 0, if b ~b � o

� ������
a=l

p �
�7:25�

For mode-II,
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�c22, c12 �TLÿ1o b ~b < 0, if b ~b � O�1� �7:26�

�c22, c12 �TLÿ1o �h22, h12 �T ~a2 < 0, if b ~b � o

� ������
a=l

p �
�7:27�

For orthotropic materials, when the main crack line coincides with one material principal axis, it is easy
to prove that the following relations hold:

cij� ÿ o� � � ÿ 1�i�jcij�o�, bi� ÿ o� � � ÿ 1�i�1bi�o�,

hij� ÿ o� � � ÿ 1�i�jhij�o�, di� ÿ o� � � ÿ 1�i�1di�o�, e� ÿ o� � e�o� �7:28�

7.2. Anti-plane deformation

All matrices de®ned reduce to scalars. Therefore

k 03 � c3k3 �
���
a
p

b3T3 � ah3g3 �7:29�

T 03 �
d3k3���

a
p � e3T3 �O�a� �7:30�

where the following notations are used:

c3 � c33, b3 � b33, h3 � h33, d3 � d33, e3 � e33:

The energy release rates and its ratio for antiplane deformation are

G3�o� � c3k3
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ÿ
c3k3 � 2

���
a
p

T3b3 � 2ah3g3
�
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2m
T 2

3 b
2
3 �7:31�

G3, 0 � G3�o�jo�0
a40

� k2
3

2m
�7:32�

G3�o�
G3, 0

� c3
ÿ
c3 � 2b3b3 � 2a3h3

�� b2
3 b

2
3 �7:33�

Here, for convenience, b3 and a3 are rede®ned as b3 �
���
a
p

T3=k3: a3 � ag3=k3 and m is invariant under
in-plane rotation. In isotropic materials, m is the shear modulus and the exact solution of c3 has been
found (Wu, 1978)

c3 �
�
1ÿ o=p
1� o=p

�o=2p

�7:34�

Note that the integral equation for q3�t�, Eq. (7.7), can be applied to isotropic case directly. Numerical
results from the integral equation are very close to the exact solution. For example, in the case of
o � p=2, the relative di�erence is less than 0.07%.

For mode-III, from Eq. (7.31)

S. Yang, F.-G. Yuan / International Journal of Solids and Structures 37 (2000) 6635±66826652



@G3�o�
@a
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~b3������
a=l
p c3b3 � 2~a3c3h3 � ~b

2

3 b
2
3

!
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where ~b3 and ~a3 are given by

~b3 �
��
l
p

T3=k3, ~a3 � lg3=k3 �7:36�
The stability condition for kinked crack along y � o under mode-III is

~b3������
a=l
p c3b3 � 2~a3c3h3 � ~b

2

3 b
2
3 < 0

which implies that

~b3h3 < 0 for ~b3h3 � O�1�

~a3h3 < 0 for ~b3h3 � o

� ������
a=l

p �
For orthotropic materials, when the main crack line coincides with one principal material axis, it is easy
to show the following relations:

b3� ÿ o� � ÿb3�o�, c3� ÿ o� � c3�o�, h3� ÿ o� � h3�o�, e3� ÿ o� � e3�o� �7:37�

8. Crack kinking at right angle from the main crack plane in orthotropic materials

For materials that possess a plane having lower fracture toughness than other planes, crack may be
de¯ected towards such weak plane under favorable conditions. For example, the crack in a ®ber
reinforced composite material, it is usually expected to grow parallel to the sti�er material direction. It
is interesting to describe the behavior of a parent crack in x1-direction turning into x2-direction in
orthotropic materials. Here, we assume the coordinate axes �x1, x2, x3� coincide with principal material
axes. First consider the in-plane deformation. The Stroh eigenvalues, p1 and p2, are roots of

s 011p
4 � ÿ2s 012 � s 066

�
p2 � s 022 � 0 �8:1�

or

lp4 � 2r
���
l
p

p2 � 1 � 0

where

l � s 011
s 022

, r � s 012 � s 066=2�����������
s 011s

0
22

p and l > 0, ÿ 1 < r <1: �8:2�

These two parameters, l and r, were introduced by Suo et al. (1991). It is obvious that the
nondimensioanl coe�cients, cij, bi, hij, di, e, associated with in-plane deformation depend on l and r for
o � p=2: In order to extract explicitly the l-dependence of these coe�cients, the x1-axis is scaled by

z � l1=4x1 �8:3�
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This scaling was ®rst used by Suo et al. (1991) to get the explicit l-dependence of cij, following a similar
argument, the l-dependence of bi, hij, di, e, can be given as follows for o � p=2,�

k 02
k 01

�
�
"
l1=8c�22 lÿ1=8c�21
lÿ1=8c�12 lÿ3=8c�11

#�
k2
k1

�
� ���

a
p

T1

"
l1=4b�2
b�1

#
� a

"
lÿ1=8h�22 lÿ3=8h�21
lÿ3=8h�12 l5=8h�11

#�
g2
g1

�
�8:4�

T 01 �
l3=8d �2k2 � l1=8d �1k1���

a
p � l1=2e�T1 �8:5�

where all the quantities with superscript `�' which is function of r only can be calculated by solving the
integral equations with l � s 011=s

0
22 � 1: c�ij, b�i , h�ij, d �i , and e� are tabulated in Tables 1 and 2.

Table 1

Variation of coe�cients as a function of r for orthotropic materials with kink angle o � p=2

r c�11 c�12 c�21 c�22 b�1 b�2

0.1 0.3984 ÿ1.0696 0.3699 ÿ0.2215 1.8023 ÿ0.2577
0.2 0.3948 ÿ1.0860 0.3668 ÿ0.2179 1.7958 ÿ0.2486
0.3 0.3914 ÿ1.1015 0.3639 ÿ0.2147 1.7901 ÿ0.2405
0.4 0.3882 ÿ1.1162 0.3612 ÿ0.2116 1.7850 ÿ0.2332
0.5 0.3853 ÿ1.1303 0.3586 ÿ0.2088 1.7804 ÿ0.2265
0.6 0.3824 ÿ1.1437 0.3562 ÿ0.2062 1.7763 ÿ0.2205
0.7 0.3798 ÿ1.1566 0.3539 ÿ0.2038 1.7725 ÿ0.2149
0.8 0.3772 ÿ1.1690 0.3517 ÿ0.2015 1.7690 ÿ0.2098
0.9 0.3748 ÿ1.1809 0.3496 ÿ0.1993 1.7659 ÿ0.2050
1.0 0.3725 ÿ1.1925 0.3476 ÿ0.1972 1.7629 ÿ0.2006
1.1 0.3703 ÿ1.2036 0.3457 ÿ0.1953 1.7602 ÿ0.1965
1.2 0.3681 ÿ1.2144 0.3439 ÿ0.1934 1.7577 ÿ0.1926
1.3 0.3661 ÿ1.2249 0.3421 ÿ0.1917 1.7553 ÿ0.1890
1.4 0.3641 ÿ1.2350 0.3404 ÿ0.1900 1.7531 ÿ0.1856
1.5 0.3622 ÿ1.2449 0.3388 ÿ0.1884 1.7511 ÿ0.1823
1.6 0.3604 ÿ1.2545 0.3372 ÿ0.1868 1.7491 ÿ0.1793
1.7 0.3586 ÿ1.2639 0.3357 ÿ0.1853 1.7473 ÿ0.1764
1.8 0.3569 ÿ1.2730 0.3342 ÿ0.1839 1.7456 ÿ0.1736
1.9 0.3553 ÿ1.2820 0.3328 ÿ0.1825 1.7439 ÿ0.1710
2.0 0.3536 ÿ1.2907 0.3314 ÿ0.1812 1.7424 ÿ0.1685
2.5 0.3463 ÿ1.3315 0.3251 ÿ0.1753 1.7357 ÿ0.1575
3.0 0.3398 ÿ1.3685 0.3195 ÿ0.1702 1.7303 ÿ0.1486
3.5 0.3341 ÿ1.4025 0.3145 ÿ0.1658 1.7259 ÿ0.1410
4.0 0.3289 ÿ1.4339 0.3100 ÿ0.1618 1.7222 ÿ0.1346
4.5 0.3242 ÿ1.4632 0.3059 ÿ0.1584 1.7191 ÿ0.1290
5.0 0.3199 ÿ1.4908 0.3022 ÿ0.1552 1.7164 ÿ0.1240
5.5 0.3159 ÿ1.5168 0.2987 ÿ0.1523 1.7140 ÿ0.1196
6.0 0.3122 ÿ1.5414 0.2955 ÿ0.1497 1.7119 ÿ0.1157
6.5 0.3088 ÿ1.5648 0.2925 ÿ0.1473 1.7100 ÿ0.1121
7.0 0.3056 ÿ1.5872 0.2897 ÿ0.1451 1.7083 ÿ0.1089
7.5 0.3026 ÿ1.6086 0.2870 ÿ0.1430 1.7068 ÿ0.1059
8.0 0.2997 ÿ1.6291 0.2845 ÿ0.1410 1.7054 ÿ0.1032
8.5 0.2970 ÿ1.6488 0.2821 ÿ0.1392 1.7042 ÿ0.1007
9.0 0.2945 ÿ1.6678 0.2799 ÿ0.1375 1.7030 ÿ0.0984
9.5 0.2920 ÿ1.6862 0.2778 ÿ0.1359 1.7019 ÿ0.0962
10.0 0.2897 ÿ1.7039 0.2757 ÿ0.1343 1.7009 ÿ0.0941
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Comparing the values of c�ij provided in this paper with those of Suo et al. (1991) shows that the relative
di�erences are very minor. The values for isotropic materials, r � 1, are listed in the Tables 1 and 2.
The values of cij and bi given in this paper are almost identical to those given by Melin (1994) and
Khrapkov (1998), respectively. Because

Lÿ1 � s 011l
ÿ3=4 �����������������

2�1� r�
p

diag
� ���

l
p

, 1
�

�8:6�

Lÿ190 � s 011l
ÿ3=4 �����������������

2�1� r�
p

diag
�
1,

���
l
p �

�8:7�
the energy release rate ratio from Eq. (7.16) leads to

Table 2

Variation of coe�cients as a function of r for orthotropic materials with kink angle o � p=2

r h�11 h�12 h�21 h�22 d �1 d �2 e�

0.1 1.0010 1.1865 0.3166 ÿ1.1650 0.2154 0.0891 ÿ0.7696
0.2 1.0170 1.2800 0.3135 ÿ1.1845 0.2224 0.0928 ÿ0.7714
0.3 1.0322 1.3713 0.3107 ÿ1.2030 0.2289 0.0964 ÿ0.7730
0.4 1.0466 1.4606 0.3080 ÿ1.2206 0.2351 0.0997 ÿ0.7745
0.5 1.0603 1.5481 0.3055 ÿ1.2373 0.2409 0.1029 ÿ0.7758
0.6 1.0735 1.6339 0.3032 ÿ1.2533 0.2465 0.1060 ÿ0.7771
0.7 1.0861 1.7183 0.3010 ÿ1.2686 0.2518 0.1089 ÿ0.7783
0.8 1.0982 1.8012 0.2988 ÿ1.2833 0.2569 0.1117 ÿ0.7794
0.9 1.1099 1.8829 0.2968 ÿ1.2974 0.2618 0.1145 ÿ0.7805
1.0 1.1212 1.9634 0.2949 ÿ1.3111 0.2669 0.1178 ÿ0.7812
1.1 1.1322 2.0428 0.2931 ÿ1.3243 0.2711 0.1196 ÿ0.7824
1.2 1.1427 2.1212 0.2914 ÿ1.3371 0.2754 0.1221 ÿ0.7833
1.3 1.1530 2.1986 0.2897 ÿ1.3494 0.2797 0.1245 ÿ0.7842
1.4 1.1630 2.2751 0.2881 ÿ1.3614 0.2838 0.1268 ÿ0.7850
1.5 1.1727 2.3507 0.2865 ÿ1.3731 0.2877 0.1291 ÿ0.7857
1.6 1.1821 2.4254 0.2850 ÿ1.3845 0.2916 0.1313 ÿ0.7865
1.7 1.1913 2.4995 0.2836 ÿ1.3955 0.2953 0.1335 ÿ0.7872
1.8 1.2003 2.5727 0.2822 ÿ1.4063 0.2990 0.1355 ÿ0.7879
1.9 1.2090 2.6453 0.2809 ÿ1.4168 0.3025 0.1376 ÿ0.7885
2.0 1.2175 2.7172 0.2796 ÿ1.4270 0.3059 0.1396 ÿ0.7891
2.5 1.2576 3.0675 0.2736 ÿ1.4751 0.3220 0.1489 ÿ0.7919
3.0 1.2939 3.4046 0.2684 ÿ1.5185 0.3364 0.1574 ÿ0.7943
3.5 1.3272 3.7308 0.2638 ÿ1.5582 0.3495 0.1651 ÿ0.7963
4.0 1.3581 4.0474 0.2597 ÿ1.5950 0.3615 0.1723 ÿ0.7981
4.5 1.3868 4.3559 0.2559 ÿ1.6293 0.3726 0.1790 ÿ0.7997
5.0 1.4138 4.6571 0.2525 ÿ1.6614 0.3830 0.1852 ÿ0.8011
5.5 1.4393 4.9518 0.2493 ÿ1.6917 0.3927 0.1911 ÿ0.8023
6.0 1.4634 5.2407 0.2464 ÿ1.7203 0.4019 0.1967 ÿ0.8035
6.5 1.4863 5.5242 0.2437 ÿ1.7476 0.4106 0.2019 ÿ0.8045
7.0 1.5082 5.8029 0.2411 ÿ1.7736 0.4188 0.2070 ÿ0.8055
7.5 1.5292 6.0772 0.2387 ÿ1.7984 0.4267 0.2118 ÿ0.8064
8.0 1.5493 6.3473 0.2365 ÿ1.8222 0.4342 0.2164 ÿ0.8072
8.5 1.5686 6.6136 0.2343 ÿ1.8451 0.4414 0.2208 ÿ0.8080
9.0 1.5872 6.8763 0.2323 ÿ1.8671 0.4483 0.2250 ÿ0.8087
9.5 1.6051 7.1357 0.2304 ÿ1.8884 0.4549 0.2291 ÿ0.8094
10.0 1.6225 7.3919 0.2286 ÿ1.9089 0.4613 0.2331 ÿ0.8100

S. Yang, F.-G. Yuan / International Journal of Solids and Structures 37 (2000) 6635±6682 6655



G90

G0
�
n
l1=4

ÿ
c�222 � c�212

�
sin2c� ÿc�22c�21 � c�11c

�
12

�
sin 2c� lÿ1=4

ÿ
c�211 � c�221

�
cos2c� 2b

h
l3=8

ÿ
b�2c
�
22

� b�1c
�
12

�
sin c� l1=8

ÿ
b�2c
�
21 � b�1c

�
11

�
cos c

i
� 2

ÿ
c�22h

�
22 � c�12h

�
12

�
~a2sin c� 2lÿ1=4

�ÿ
c�22h

�
21

� c�12h
�
11

�
~a1sin c� ÿc�21h�22 � c�11h

�
12

�
~a2cos c

�� 2lÿ1=2
ÿ
c�21h

�
21 � c�11h

�
11

�
~a1cos c

� b2l1=2
ÿ
b�22 � b�21

�o
=
� ���

l
p

sin2c� cos 2c
�

�8:8�

When the main crack is subjected to a predominantly mode-I loading, k1 > 0, k2 � 0, from Eq. (8.8)
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The ®rst terms in Eqs. (8.8) and (8.9) representing the ratio when b � 0 was given by Hutchinson and
Suo (1992). From Eq. (7.20), we have
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which can be expanded as
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The stability condition (7.21) becomes"
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In the range of 0 < r < 10, it can be proved from Tables 1 and 2 that all the coe�cients of ~b, ~a1, ~a2 in
Eq. (8.11) or (8.12) are non-negative if cR0, and G90 decreases with c when c > 0, in general.
Therefore, for o � 908, we consider cR0: Eqs. (8.11) and (8.12) can be simpli®ed in the following two
cases:

~b < 0 if ~b � O�1� �8:13�
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For mode-I, c � 08

~b < 0 if ~b � O�1�

~a1 < 0 if ~b � o
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a=l

p �
For mode-II, c � ÿ908

~b < 0 if ~b � O�1�

~a2 < 0 if ~b � o
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p �
Making a similar argument, if o � ÿ908 is the possible kink direction, c > 0 needs to be considered.
The expressions of Gÿ90 and @Gÿ90

@a have the same forms as those in the case o � 908, but the values of c�ij
and h�ij should be taken at o � ÿ908:
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3 are functions of l3 only. We scale the x1-axis by
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Making similar arguments as that for in-plane deformation, the l3-dependence on k3 and T3 is given as
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The energy release rate ratio is
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9. Numerical results and discussion

In order to provide some insights and better understanding of the role of anisotropy in kinking
behavior, the following numerical results are limited to materials with orthotropic symmetry. Let X, Y,
and Z be the principal material axes and x1, x2, and x3 be the ®xed coordinate axes. Assume x3 is
coincident with Z. The main crack shown in Fig. 2 is lying along x2 � 0 and x1 < 0 and the crack plane
makes an angle y0 from the material X-axis. The angle y0 termed as crack orientation is considered to
be positive if counterclockwise. Since the in-plane and anti-plane deformations are decoupled, they will
be treated separately in this section.

First, we consider the in-plane deformation. Based on the previous analyses, the solutions, cij, bi, hij,
di, and e for crack kinking will depend on six reduced compliances, s 011, s

0
12, s

0
22, s

0
16, s

0
26, and s 066 for an

arbitrary crack orientation, y0: In order to reduce the material parameters in the solutions, we introduce
two dimensionless parameters

l � s 0XX
s 0YY

, r �
ÿ
2s 0XY � 1=GXY

�
2
��������������
s 0XXs

0
YY

p �9:1�

where s 0XX, s
0
YY, and s 0XY are reduced compliances de®ned in the principal material coordinate system

�X, Y, Z). Then the solutions will depend on three parameters, l, r, and y0: To show the e�ect of the
crack orientation on crack kinking, we assume s 0XX=s

0
YY > 1 without loss of generality. This means that

Y and X are along the sti�er and weaker principal material axes respectively. Thus, we can conclude
that the solutions under general mixed-mode loading will depend on o, l, r, and y0: For a given
material and y0, solutions for the coe�cients cij, bi, hij, di, e as a function of o can be computed from
the system of singular integral equations.

In observing crack kinking phenomenon for composites in laboratory experiments, the specimens are
usually conducted along the principal material axes under symmetric pure mode-I loading. Since small

Fig. 2. Crack orientation and principal material axes for a kinked crack.

Fig. 3. (a) Variation of the stress intensity factors, k 01, k
0
2 and the energy release rate G at the kinked crack tip with the kink angle

o for various values of the T-stress parameter b for two materials. The main crack with orientation y0 � ÿ58 is subjected to mixed

loading c � 58: (b) Variation of the stress intensity factors, k 01, k
0
2, at the kinked crack tip with the kink angle o for di�erent values

of the T-stress parameter b for three materials. The main crack with orientation y0 � 908 is subjected to mode-I loading c � 0:
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Fig. 3 (continued)
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Fig. 3 (continued)
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errors may arise from material misalignment (or crack orientation) and non-perfect loading locations are

sometimes unavoidable in the tests, it is interesting to analyze the kinking behavior of a small material

misalignment (or the main crack is aligned close to principal material orientation) under nearly mode-I

loading with a small component of mode-II present. To illustrate the e�ect of these imperfections

quantitatively on the kinking behavior, the main crack with orientation y0 � ÿ58 and subjected to

mixed-mode loading phase c � tanÿ1�k2=k1� � 58 is investigated. Fig. 3(a) illustrates that stress intensity

factors k 01, k
0
2, and the energy release rate G�o� at the kinked crack tip vary with the kink angle o for

three values of the T-stress parameter, b � ���
a
p

T1=jkj, for two materials. One material having l � 1:1

Fig. 4. Energy release rate ratios, G90=G0 and G45=G0, as functions of the loading phase c for various values of the T-stress par-

ameter b for di�erent degrees of anisotropy.
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and r � �������
1:1
p

is considered to be nearly isotropic; the other has a high degree of anisotropy, l � 5, r ����
5
p
: In this ®gure and the sequel, only the ®rst two terms in the expressions of k 0 and G�o�, Eqs. (7.12)

and (7.16), are included. The e�ect of higher-order terms with order of a will be discussed later and the
®gures will be shown in Figs. 14±16. k 01, k

0
2, and G are normalized by the absolute values, jkj and G0,

respectively. Here jkj and G0 are the norm of the stress intensity factors and energy release rate at the
main crack tip prior to kinking. The T-stress, T1, has important e�ect on k 01, k

0
2, and G�o�: In the region

of ÿ1508 < o < 1508, numerical results indicate that the kinked crack tip is open at o < 1408 for

Fig. 5. Variation of coe�cients cij, bi, hij, di, and e with kink angle o for y0 � 08: (The main crack is perpendicular to the sti�er ma-

terial axis of a composite with l � 1:93, r � 1:18).
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Fig. 6. Variation of coe�cients cij, bi, hij, di, and e with kink angle o for y0 � 458: (The main crack makes an angle of 458 with the

sti�er material axis of a composite with l � 1:93, r � 1:18).

Table 3

The coe�cients as a function of selected o for y0 � 0 in AS4 composite

o c11 c12 c21 c22 b1 b2 d1 d2 e1 h11 h12 h21 h22

p=4 0.7391 ÿ0.9790 0.3888 0.5282 0.8094 ÿ0.8315 0.0748 0.3685 0.2347 1.0166 ÿ0.7467 0.0204 ÿ0.6205
p=2 0.2880 ÿ1.1166 0.3171 ÿ0.2104 1.7582 ÿ0.2279 0.2981 0.1556 ÿ1.0880 0.7563 1.6455 0.2280 ÿ1.2292
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Fig. 7. Variation of coe�cients cij, bi, hij, di, and e with kink angle o for y0 � 908: (The main crack is parallel to the sti�er material

axis of a composite with l � 1:93, r � 1:18).

Table 4

The coe�cients as a function of selected o for y0 � 458 in AS4 composite

o c11 c12 c21 c22 b1 b2 d1 d2 e1 h1 1 h12 h 21 h 22

ÿp=2 0.2628 1.2211 ÿ0.3994 ÿ0.2596 1.7212 0.1548 0.2665 ÿ0.2138 ÿ0.7602 1.4279 ÿ1.3346 ÿ0.1918 ÿ1.2807
ÿp=4 0.7606 1.0384 ÿ0.3818 0.6091 0.8089 0.8284 0.1251 ÿ0.3056 0.1887 1.3132 0.9844 0.2447 ÿ0.4665
p=4 0.8113 ÿ0.9381 0.2657 0.5038 0.8150 ÿ0.8506 0.0816 0.4837 ÿ0.0947 1.1036 ÿ0.4680 0.0247 ÿ0.8419
p=2 0.4806 ÿ1.1263 0.2890 ÿ0.1346 1.8304 ÿ0.2773 0.2651 ÿ0.0075 ÿ0.7075 0.5912 2.2658 0.4189 ÿ1.3166
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Table 5

The coe�cients as a function of selected o for y0 � p=2 in AS4 composite

o c11 c12 c21 c22 b1 b2 d1 d2 e1 h11 h12 h21 h22

p=4 0.8552 ÿ1.0391 0.2509 0.6538 0.8160 ÿ0.8450 0.1348 0.3568 ÿ0.0610 1.6115 ÿ0.4750 ÿ0.4241 ÿ0.9760
p=2 0.4716 ÿ1.3161 0.3737 ÿ0.1785 1.7582 ÿ0.1641 0.2529 0.0950 ÿ0.5637 1.7204 2.6944 0.3733 ÿ1.4489

Fig. 8. Energy release rate ratio, G=G0 as a function of the kink angle o for various values of loading phase c and the T-stress par-

ameter b: The main crack is perpendicular to the sti�er material axis �y0 � 08).
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r � 1:1, and o < 1108 for r � 5 (estimated from the condition of opening crack tip, Eq. (3.28)) by
selecting T1 � 0: In both cases, the positive T1 �b > 0� increases k 01 in the region of interest, and reduces
the absolute value jk 02j in the practically important region, ÿ908 < o < 908: In contrast, the negative T-
stress �b < 0� has opposite e�ect on k 01 and k 02: As a result, the positive T-stress increases G�o� almost in
the whole region, especially in the region o < 0 and shifts Gmax to the negative direction of o:
Conversely, the negative T-stress reduces G in o < 0 and shifts Gmax to the positive direction of o:
These e�ects become more signi®cant with increase of material anisotropy. For the material with
stronger anisotropy, l � 5, r � ���

5
p

, when jbj increases 0.05, G90=G0 can increase by 38%. Note that

Fig. 9. Energy release rate ratio, G=G0 as a function of the kink angle o for various values of loading phase c and the T-stress par-

ameter b: The main crack is perpendicular to the sti�er material axis �y0 � 458).
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under prefect material alignment and pure mode-I loading for y0 � 08, both the maximum values of
G�o� and k 01�o� occur at o � 0 and k 02�o� � 0 when o � 0 exactly. In this example, let oc be the kinking
angle at which G�o�, or k 01�o� reaches maximum or k 02�o� � 0, then the values of shifted oc due to the
imperfections are given below:

�i� ocjG�Gmax
� ÿ108, ocjk 0

2
�0 � ÿ9:58, ocjk 0

1
�kmax
� ÿ9:58, for l � 1:1, r �

�������
1:1
p

, b � 0

Fig. 10. Energy release rate ratio, G=G0 as a function of the kink angle o for various values of loading phase c and the T-stress

parameter b: The main crack is perpendicular to the sti�er material axis �y0 � 908).
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�ii� ocjG�Gmax
� ÿ58, ocjk 0

2
�0 � ÿ58, ocjk 0

1
�kmax
� ÿ58, for l � 5, r �

���
5
p

, and b � ÿ0:1

�iii� ocjG�Gmax
� ÿ138, ocjk 0

2
�0 � ÿ6:58, ocjk 0

1
�kmax
� ÿ6:58, for l � 5, r �

���
5
p

, and b � 0

�iv� ocjG�Gmax
� ÿ258, ocjk 0

2
�0 � ÿ88, ocjk 0

1
�kmax
� ÿ98, for l � 5, r �

���
5
p

, and b � 0:1

For the nearly isotropic materials (case (i)), the kinked angles predicted by the three fracture criteria,
maximum G, maximum k 01, and k 02 � 0 are essentially identical in this case. However, in the case of high
degree of material anisotropy, the kinked angles predicted by the three criteria, in general, can be
drastically di�erent for br0 and this measurable di�erence cannot be neglected.

Fig. 3(b) shows the variation of k 01, k
0
2 with o under b � ÿ0:1, 0, 0:05 for three di�erent degrees of

material anisotropy, l � 3, 4, 5 and corresponding r � ���
l
p
: The main crack is parallel to the sti�er

Table 6

Variation of coe�cients as a function of kinked angle o for orthotropic materials l � 1:93, r � 1:18, y0 � 00

o c11 c12 c21 c22 b1 b2

0 1 0 0 1 0 0

5 0.9963 ÿ0.1306 0.0557 0.9933 0.0121 ÿ0.1386
10 0.9854 ÿ0.2594 0.1104 0.9735 0.0482 ÿ0.2733
15 0.9675 ÿ0.3848 0.1631 0.9409 0.1071 ÿ0.4003
20 0.9429 ÿ0.5050 0.2128 0.8962 0.1872 ÿ0.5160
25 0.9121 ÿ0.6184 0.2587 0.8402 0.2862 ÿ0.6173
30 0.8755 ÿ0.7237 0.2999 0.7739 0.4013 ÿ0.7014
35 0.8340 ÿ0.8196 0.3357 0.6988 0.5393 ÿ0.7660
40 0.7882 ÿ0.9049 0.3655 0.6163 0.6666 ÿ0.8097
45 0.7391 ÿ0.9790 0.3888 0.5282 0.8094 ÿ0.8315
50 0.6874 ÿ1.0410 0.4052 0.4362 0.9538 ÿ0.8312
55 0.6342 ÿ1.0907 0.4146 0.3424 1.0959 ÿ0.8095
60 0.5803 ÿ1.1280 0.4171 0.2488 1.2320 ÿ0.7675
65 0.5267 ÿ1.1530 0.4129 0.1573 1.3586 ÿ0.7071
70 0.4742 ÿ1.1661 0.4025 0.0699 1.4726 ÿ0.6308
75 0.4235 ÿ1.1682 0.3868 ÿ0.0118 1.5714 ÿ0.5416
80 0.3753 ÿ1.1599 0.3665 ÿ0.0862 1.6529 ÿ0.4425
85 0.3300 ÿ1.1424 0.3429 ÿ0.1526 1.7155 ÿ0.3369
90 0.2880 ÿ1.1166 0.3171 ÿ0.2104 1.7582 ÿ0.2279
95 0.2494 ÿ1.0837 0.2901 ÿ0.2596 1.7804 ÿ0.1185
100 0.2143 ÿ1.0446 0.2628 ÿ0.3005 1.7819 ÿ0.0111
105 0.1825 ÿ1.0002 0.2360 ÿ0.3338 1.7632 0.0918

110 0.1540 ÿ0.9513 0.2101 ÿ0.3599 1.7248 0.1882

115 0.1285 ÿ0.8986 0.1854 ÿ0.3795 1.6678 0.2762

120 0.1059 ÿ0.8426 0.1621 ÿ0.3928 1.5933 0.3538

125 0.0860 ÿ0.7840 0.1402 ÿ0.4003 1.5032 0.4195

130 0.0684 ÿ0.7232 0.1198 ÿ0.4020 1.3993 0.4716

135 0.0523 ÿ0.6603 0.1012 ÿ0.3982 1.2842 0.5086

140 0.0494 ÿ0.6005 0.0797 ÿ0.3870 1.1529 0.5323

145 0.0321 ÿ0.5328 0.0664 ÿ0.3736 1.0248 0.5351

150 0.0208 ÿ0.4613 0.0538 ÿ0.3597 0.8908 0.5202
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material direction, y0 � 908, and subjected to mode-I loading. It is shown that the variation of k 01, k
0
2 for

di�erent T-stress levels is quite di�erent. oc is given by G�oc� � Gmax is oc � 0 for all cases (not shown
in the ®gure). But oc determined by k 01�o� � �k 01�max and k 02�o� � 0 are listed below:

ocjk 0
2
�0 � 0, ocjk 0

1
�kmax
� 0, for l � 3, b � ÿ0:1, 0, 0:05;

ocjk 0
2
�0 � 0, ocjk 0

1
�kmax
� 0, for l � 4 and 5, b � ÿ0:1

However,

ocjk 0
2
�0 � 08,2208, ocjk 0

1
�kmax
�220:58, for l � 5, b � 0

Table 7

Variation of coe�cients as a function of kinked angle o for orthotropic materials l � 1:93, r � 1:18, y0 � 08

o h11 h12 h21 h22 d1 d2 e

0 1 0 0 1 0 0 1

5 1.0008 ÿ0.2162 ÿ0.0068 0.9725 0.0009 0.0463 0.9899

10 1.0029 ÿ0.4204 ÿ0.0128 0.8913 0.0035 0.0921 0.9596

15 1.0062 ÿ0.6012 ÿ0.0172 0.7602 0.0079 0.1371 0.9097

20 1.0102 ÿ0.7484 ÿ0.0193 0.5851 0.0141 0.1809 0.8408

25 1.0143 ÿ0.8531 ÿ0.0184 0.3741 0.0221 0.2230 0.7536

30 1.0178 ÿ0.9087 ÿ0.0142 0.1370 0.0320 0.2633 0.6488

35 1.0199 ÿ0.9104 ÿ0.0064 ÿ0.1154 0.0440 0.3013 0.5271

40 1.0198 ÿ0.8562 0.0052 ÿ0.3718 0.0581 0.3367 0.3889

45 1.0166 ÿ0.7467 0.0204 ÿ0.6205 0.0748 0.3685 0.2347

50 1.0095 ÿ0.5847 0.0390 ÿ0.8506 0.0940 0.3958 0.0654

55 0.9978 ÿ0.3755 0.0606 ÿ1.0521 0.1161 0.4168 ÿ0.1173
60 0.9809 ÿ0.1264 0.0844 ÿ1.2167 0.1410 0.4293 ÿ0.3099
65 0.9582 0.1535 0.1098 ÿ1.3378 0.1685 0.4300 ÿ0.5061
70 0.9296 0.4541 0.1358 ÿ1.4114 0.1978 0.4153 ÿ0.6961
75 0.8949 0.7645 0.1616 ÿ1.4357 0.2277 0.3818 ÿ0.8658
80 0.8542 1.0736 0.1861 ÿ1.4113 0.2560 0.3270 ÿ0.9982
85 0.8078 1.3706 0.2085 ÿ1.3409 0.2803 0.2505 ÿ1.0763
90 0.7563 1.6455 0.2280 ÿ1.2292 0.2981 0.1556 ÿ1.0880
95 0.7003 1.8893 0.2437 ÿ1.0823 0.3075 0.0485 ÿ1.0298
100 0.6407 2.0945 0.2550 ÿ0.9069 0.3080 ÿ0.0628 ÿ0.9090
105 0.5784 2.2549 0.2616 ÿ0.7109 0.3002 ÿ0.1706 ÿ0.7408
110 0.5147 2.3661 0.2629 ÿ0.5021 0.2858 ÿ0.2690 ÿ0.5438
115 0.4507 2.4256 0.2590 ÿ0.2889 0.2667 ÿ0.3548 ÿ0.3354
120 0.3876 2.4325 0.2498 ÿ0.0794 0.2448 ÿ0.4270 ÿ0.1290
125 0.3266 2.3878 0.2356 0.1181 0.2214 ÿ0.4864 ÿ0.0665
130 0.2689 2.2945 0.2170 0.2961 0.1972 ÿ0.5341 ÿ0.2461
135 0.2154 2.1572 0.1945 0.4475 0.1709 ÿ0.5712 0.4084

140 0.1670 1.9768 0.1693 0.5685 0.1767 ÿ0.6128 0.5315

145 0.1247 1.7723 0.1421 0.6497 0.1374 ÿ0.6290 0.6622

150 0.0887 1.5436 0.1141 0.6901 0.1178 ÿ0.6541 0.7586
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Table 8

Variation of coe�cients as a function of kinked angle o for orthotropic materials l � 1:93, r � 1:18, y0 � 458

o c11 c12 c21 c22 b1 b2

ÿ150 ÿ0.0374 0.4387 ÿ0.0192 ÿ0.3943 0.7686 ÿ0.5222
ÿ145 ÿ0.0415 0.5052 ÿ0.0416 ÿ0.4349 0.8993 ÿ0.5530
ÿ140 ÿ0.0311 0.5770 ÿ0.0645 ÿ0.4697 1.0243 ÿ0.5702
ÿ135 ÿ0.0212 0.6494 ÿ0.0928 ÿ0.4983 1.1481 ÿ0.5700
ÿ130 ÿ0.0076 0.7229 ÿ0.1248 ÿ0.5184 1.2667 ÿ0.5521
ÿ125 0.0101 0.7968 ÿ0.1598 ÿ0.5285 1.3775 ÿ0.5159
ÿ120 0.0323 0.8700 ÿ0.1967 ÿ0.5273 1.4775 ÿ0.4613
ÿ115 0.0592 0.9415 ÿ0.2346 ÿ0.5137 1.5643 ÿ0.3892
ÿ110 0.0910 1.0098 ÿ0.2723 ÿ0.4873 1.6352 ÿ0.3013
ÿ105 0.1275 1.0734 ÿ0.3086 ÿ0.4480 1.6879 ÿ0.1997
ÿ100 0.1685 1.1307 ÿ0.3425 ÿ0.3964 1.7206 ÿ0.0876
ÿ95 0.2138 1.1804 ÿ0.3731 ÿ0.3332 1.7320 0.0319

ÿ90 0.2628 1.2211 ÿ0.3994 ÿ0.2596 1.7212 0.1548

ÿ85 0.3150 1.2514 ÿ0.4210 ÿ0.1769 1.6882 0.2774

ÿ80 0.3697 1.2703 ÿ0.4371 ÿ0.0865 1.6333 0.3957

ÿ75 0.4263 1.2770 ÿ0.4474 0.0097 1.5578 0.5060

ÿ70 0.4840 1.2707 ÿ0.4517 0.1100 1.4635 0.6046

ÿ65 0.5419 1.2510 ÿ0.4498 0.2127 1.3527 0.6885

ÿ60 0.5994 1.2178 ÿ0.4417 0.3157 1.2284 0.7547

ÿ55 0.6555 1.1711 ÿ0.4275 0.4174 1.0938 0.8011

ÿ50 0.7095 1.1111 ÿ0.4074 0.5157 0.9527 0.8260

ÿ45 0.7606 1.0384 ÿ0.3818 0.6091 0.8089 0.8284

ÿ40 0.8082 0.9538 ÿ0.3510 0.6957 0.6664 0.8080

ÿ35 0.8515 0.8583 ÿ0.3156 0.7740 0.5293 0.7653

ÿ30 0.8900 0.7529 ÿ0.2763 0.8427 0.4013 0.7011

ÿ25 0.9232 0.6392 ÿ0.2336 0.9005 0.2862 0.6173

ÿ20 0.9508 0.5185 ÿ0.1885 0.9464 0.1872 0.5161

ÿ15 0.9724 0.3925 ÿ0.1417 0.9797 0.1071 0.4004

ÿ10 0.9878 0.2629 ÿ0.0941 0.9998 0.0482 0.2733

ÿ5 0.9969 0.1315 ÿ0.0465 1.0065 0.0121 0.1386

0 1 0 0 1 0 0

5 0.9970 ÿ0.1298 0.0447 0.9806 0.0121 ÿ0.1386
10 0.9884 ÿ0.2561 0.0867 0.9490 0.0482 ÿ0.2734
15 0.9745 ÿ0.3775 0.1253 0.9063 0.1071 ÿ0.4007
20 0.9558 ÿ0.4926 0.1599 0.8539 0.1873 ÿ0.5170
25 0.9328 ÿ0.6001 0.1900 0.7933 0.2865 ÿ0.6196
30 0.9063 ÿ0.6990 0.2155 0.7262 0.4022 ÿ0.7058
35 0.8768 ÿ0.7886 0.2364 0.6545 0.5311 ÿ0.7738
40 0.8450 ÿ0.8684 0.2530 0.5799 0.6699 ÿ0.8223
45 0.8113 ÿ0.9381 0.2657 0.5038 0.8150 ÿ0.8506
50 0.7764 ÿ0.9977 0.2753 0.4274 0.9629 ÿ0.8582
55 0.7405 ÿ1.0472 0.2824 0.3516 1.1097 ÿ0.8454
60 0.7040 ÿ1.0867 0.2874 0.2767 1.2519 ÿ0.8126
65 0.6671 ÿ1.1164 0.2909 0.2031 1.3860 ÿ0.7608
70 0.6299 ÿ1.1366 0.2930 0.1311 1.5088 ÿ0.6913
75 0.5925 ÿ1.1474 0.2939 0.0609 1.6170 ÿ0.6057
80 0.5551 ÿ1.1491 0.2936 ÿ0.0071 1.7082 ÿ0.5064
85 0.5178 ÿ1.1419 0.2920 ÿ0.0725 1.7799 ÿ0.3960
90 0.4806 ÿ1.1263 0.2890 ÿ0.1346 1.8304 ÿ0.2273
95 0.4438 ÿ1.1025 0.2845 ÿ0.1930 1.8583 ÿ0.1537
100 0.4074 ÿ1.0709 0.2784 ÿ0.2468 1.8631 ÿ0.0286
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Table 8 (continued )

o c11 c12 c21 c22 b1 b2

105 0.3717 ÿ1.0322 0.2706 ÿ0.2955 1.8445 0.0944

110 0.3367 ÿ0.9869 0.2612 ÿ0.3383 1.8031 0.2120

115 0.3027 ÿ0.9356 0.2501 ÿ0.3747 1.7398 0.3207

120 0.2698 ÿ0.8790 0.2373 ÿ0.4041 1.6563 0.4174

125 0.2380 ÿ0.8179 0.2231 ÿ0.4260 1.5547 0.4993

130 0.2075 ÿ0.7531 0.2074 ÿ0.4401 1.4376 0.5641

135 0.1776 ÿ0.6850 0.1906 ÿ0.4459 1.3082 0.6096

140 0.1757 ÿ0.6212 0.1683 ÿ0.4424 1.1574 0.6367

145 0.1308 ÿ0.5449 0.1528 ÿ0.4324 1.0205 0.6390

150 0.1055 ÿ0.4706 0.1345 ÿ0.4150 0.8729 0.6205

Table 9

Variation of coe�cients as a function of kinked angle o for orthotropic materials l � 1:93, r � 1:18, y0 � 458

o h11 h12 h21 h22 d1 d2 e

ÿ150 0.3489 ÿ1.3924 ÿ0.2828 0.6851 0.0857 0.7781 0.7372

ÿ145 0.4362 ÿ1.6068 ÿ0.3246 0.6554 0.1026 0.7280 0.5720

ÿ140 0.5298 ÿ1.7965 ÿ0.3611 0.5858 0.1653 0.6670 0.3467

ÿ135 0.6293 ÿ1.9588 ÿ0.3904 0.4754 0.2092 0.5783 0.1064

ÿ130 0.7326 ÿ2.0848 ÿ0.4108 0.3275 0.2455 0.4723 ÿ0.1340
ÿ125 0.8376 ÿ2.1679 ÿ0.4211 0.1468 0.2730 0.3578 ÿ0.3537
ÿ120 0.9421 ÿ2.2026 ÿ0.4204 ÿ0.0596 0.2909 0.2435 ÿ0.5364
ÿ115 1.0437 ÿ2.1853 ÿ0.4080 ÿ0.2830 0.3001 0.1363 ÿ0.6738
ÿ110 1.1399 ÿ2.1141 ÿ0.3841 ÿ0.5130 0.3019 0.0406 ÿ0.7645
ÿ105 1.2285 ÿ1.9895 ÿ0.3492 ÿ0.7387 0.2979 ÿ0.0418 ÿ0.8124
ÿ100 1.3072 ÿ1.8143 ÿ0.3044 ÿ0.9488 0.2899 ÿ0.1110 ÿ0.8234
ÿ95 1.3742 ÿ1.5936 ÿ0.2513 ÿ1.1326 0.2791 ÿ0.1678 ÿ0.8040
ÿ90 1.4279 ÿ1.3346 ÿ0.1918 ÿ1.2807 0.2665 ÿ0.2138 ÿ0.7602
ÿ85 1.4673 ÿ1.0463 ÿ0.1182 ÿ1.3851 0.2527 ÿ0.2503 ÿ0.6966
ÿ80 1.4918 ÿ0.7393 ÿ0.0630 ÿ1.4401 0.2381 ÿ0.2788 ÿ0.6170
ÿ75 1.5016 ÿ0.4250 0.0013 ÿ1.4421 0.2229 ÿ0.3001 ÿ0.5242
ÿ70 1.4970 ÿ0.1154 0.0622 ÿ1.3904 0.2073 ÿ0.3149 ÿ0.4205
ÿ65 1.4793 0.1778 0.1173 ÿ1.2866 0.1913 ÿ0.3238 ÿ0.3081
ÿ60 1.4500 0.4435 0.1645 ÿ1.1348 0.1750 ÿ0.3272 ÿ0.1889
ÿ55 1.4109 0.6716 0.2023 ÿ0.9416 0.1585 ÿ0.3251 ÿ0.0649
ÿ50 1.3645 0.8540 0.2292 ÿ0.7155 0.1418 ÿ0.3179 0.0617

ÿ45 1.3132 0.9844 0.2447 ÿ0.4665 0.1251 ÿ0.3056 0.1887

ÿ40 1.2596 1.0590 0.2485 ÿ0.2059 0.1085 ÿ0.2886 0.3139

ÿ35 1.2063 1.0764 0.2409 0.0545 0.0922 ÿ0.2670 0.4349

ÿ30 1.1557 1.0379 0.2230 0.3028 0.0764 ÿ0.2411 0.5496

ÿ25 1.1099 0.9475 0.1960 0.5276 0.0611 ÿ0.2111 0.6561

ÿ20 1.0707 0.8113 0.1619 0.7187 0.0466 ÿ0.1770 0.7526

ÿ15 0.0396 0.6378 0.1228 0.8671 0.0331 ÿ0.1390 0.8373

ÿ10 0.0174 0.4370 0.0811 0.9661 0.0207 ÿ0.0970 0.9083

ÿ5 0.0042 0.2204 0.0393 1.0111 0.0096 ÿ0.0507 0.9634

(continued on next page)
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ocjk 0
2
�0 � 08,2198, ocjk 0

1
�kmax
�2238, for l � 4, b � 0:05

ocjk 0
2
�0 � 08,2288, ocjk 0

1
�kmax
�2328, for l � 5, b � 0:05

In the above three cases, k 02 � 0 provides three solutions for oc and k 01jo�0 becomes local minimum
shown in the ®gure. If the g-term is included in the calculation, a similar characteristic still remains. The
value of k 01jo�0 being the local minimum for strong material anisotropy was observed by Gao and Chiu
(1992) based on a perturbation solution and b � 0: Because the fracture resistance at o � 0 (along the
sti�er direction) is, in general, lower compared with other directions, based on the energy release rate
criterion, the crack extension will usually take place at G�o�jo�0 � Gc: Since b � 0 at o � 0, the stability
condition of the kinked crack tip is controlled by the g-term according to Eq. (7.25).

Table 9 (continued )

o h11 h12 h21 h22 d1 d2 e

0 1 0 0 1 0 0 1

5 1.0039 ÿ0.2119 ÿ0.0344 0.9333 ÿ0.0076 0.0554 1.0144

10 1.0145 ÿ0.4033 ÿ0.0619 0.8139 ÿ0.0127 0.1154 1.0022

15 1.0302 ÿ0.5633 ÿ0.0806 0.6471 ÿ0.0146 0.1795 0.9580

20 1.0488 ÿ0.6822 ÿ0.0893 0.4405 ÿ0.0125 0.2463 0.8766

25 1.0680 ÿ0.7523 ÿ0.0872 0.2030 ÿ0.0053 0.3133 0.7533

30 1.0855 ÿ0.7680 ÿ0.0741 ÿ0.0549 0.0076 0.3762 0.5868

35 1.0987 ÿ0.7260 ÿ0.0504 ÿ0.3225 0.0269 0.4294 0.3813

40 1.1054 ÿ0.6254 ÿ0.0170 ÿ0.5884 0.0520 0.4670 0.1481

45 1.1036 ÿ0.4680 0.0247 ÿ0.8419 0.0816 0.4837 ÿ0.0947
50 1.0916 ÿ0.2577 0.0730 ÿ1.0727 0.1136 0.4771 ÿ0.3255
55 0.0681 ÿ0.0009 0.1255 ÿ1.2715 0.1453 0.4480 ÿ0.5247
60 0.0326 0.2945 0.1801 ÿ1.4304 0.1745 0.4003 ÿ0.6789
65 0.9847 0.6186 0.2342 ÿ1.5429 0.1998 0.3395 ÿ0.7827
70 0.9249 0.9604 0.2855 ÿ1.6042 0.2205 0.2711 ÿ0.8380
75 0.8540 1.3082 0.3315 ÿ1.6116 0.2369 0.1997 ÿ0.8507
80 0.7735 1.6496 0.3702 ÿ1.5645 0.2493 0.1284 ÿ0.8285
85 0.6852 1.9726 0.3998 ÿ1.4649 0.2585 0.0590 ÿ0.7786
90 0.5912 2.2658 0.4189 ÿ1.3166 0.2651 ÿ0.0075 ÿ0.7075
95 0.4941 2.5187 0.4268 ÿ1.1260 0.2695 ÿ0.0709 ÿ0.6199
100 0.3964 2.7226 0.4230 ÿ0.9010 0.2723 ÿ0.1312 ÿ0.5197
105 0.3008 2.8705 0.4077 ÿ0.6513 0.2736 ÿ0.1888 ÿ0.4097
110 0.2097 2.9577 0.3817 ÿ0.3876 0.2734 ÿ0.2436 ÿ0.2923
115 0.1257 2.9820 0.3463 ÿ0.1213 0.2719 ÿ0.2959 ÿ0.1696
120 0.0506 2.9435 0.3030 0.1364 0.2688 ÿ0.3455 ÿ0.0435
125 ÿ0.0139 2.8448 0.2540 0.3744 0.2641 ÿ0.3923 0.0837

130 ÿ0.0664 2.6908 0.2014 0.5827 0.2573 ÿ0.4361 0.2101

135 ÿ0.1064 2.4888 0.1479 0.7527 0.2466 ÿ0.4760 0.3340

140 ÿ0.1325 1.2377 0.0956 0.8790 0.2917 ÿ0.5265 0.4261

145 ÿ0.1480 1.9729 0.0477 0.9527 0.2380 ÿ0.5497 0.5533

150 ÿ0.1512 1.6830 0.0059 0.9746 0.2248 ÿ0.5812 0.6506
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~a1 < 0 at o � 0

that is, if g1 < 0, the kinked crack is stable and vice versa.
For ®ber reinforced composites, a dominant crack tends to de¯ect into the sti�er material direction. It

is assumed that the sti�er material orientation coincides with principal material Y-axis. If the crack is
perpendicular to the sti�er direction, y0 � 08, the kinking along the sti�er direction can be described by
G90 � G�o�jo�90 or Gÿ90 � G�o�jo�ÿ90: Three ®gures presented in Fig. 4 provide G90=G0 as a function of
loading phase c for a variety of T-stress levels described by b for two anisotropic materials. For
comparison purposes, the case of isotropic materials is also shown. The two anisotropic materials have
material constants: l � 1:93, r � 1:18; and l � 5, r � ���

5
p
: Clearly, the positive b increases G90 and vice

versa regardless of the loading phase. G90 reaches maximum around the loading phase angle c � ÿ668
for the two anisotropic materials, c � ÿ698 for isotropic materials. When the value of b increases 0.1,

Table 10

Variation of coe�cients as a function of kinked angle o for orthotropic materials l � 1:93, r � 1:18, y0 � 908

o c11 c12 c21 c22 b1 b2

0 1 0 0 1 0 0

5 0.9982 ÿ0.1307 0.0267 0.9960 0.0121 ÿ0.1387
10 0.9930 ÿ0.2603 0.0537 0.9839 0.0482 ÿ0.2737
15 0.9842 ÿ0.3877 0.0812 0.9634 0.1072 ÿ0.4014
20 0.9718 ÿ0.5116 0.1094 0.9342 0.1875 ÿ0.5185
25 0.9557 ÿ0.6310 0.1380 0.8960 0.2871 ÿ0.6216
30 0.9360 ÿ0.7446 0.1669 0.8487 0.4031 ÿ0.7080
35 0.9126 ÿ0.8513 0.1956 0.7922 0.5323 ÿ0.7752
40 0.8856 ÿ0.9498 0.2238 0.7271 0.6712 ÿ0.8213
45 0.8552 ÿ1.0391 0.2509 0.6538 0.8160 ÿ0.8450
50 0.8214 ÿ1.1182 0.2764 0.5733 0.9626 ÿ0.8457
55 0.7846 ÿ1.1863 0.2997 0.4865 1.1070 ÿ0.8234
60 0.7450 ÿ1.2426 0.3205 0.3948 1.2452 ÿ0.7790
65 0.7030 ÿ1.2866 0.3384 0.2994 1.3735 ÿ0.7137
70 0.6590 ÿ1.3180 0.3530 0.2019 1.4883 ÿ0.6297
75 0.6134 ÿ1.3365 0.3640 0.1038 1.5864 ÿ0.5295
80 0.5666 ÿ1.3422 0.3712 0.0066 1.6654 ÿ0.4162
85 0.5192 ÿ1.3352 0.3745 ÿ0.0880 1.7231 ÿ0.2931
90 0.4716 ÿ1.3161 0.3737 ÿ0.1785 1.7582 ÿ0.1641
95 0.4243 ÿ1.2854 0.3690 ÿ0.2635 1.7697 ÿ0.0329
100 0.3778 ÿ1.2438 0.3603 ÿ0.3415 1.7577 0.0965

105 0.3326 ÿ1.1924 0.3478 ÿ0.4112 1.7226 0.2203

110 0.2892 ÿ1.1321 0.3317 ÿ0.4715 1.6655 0.3348

115 0.2478 ÿ1.0641 0.3122 ÿ0.5213 1.5883 0.4368

120 0.2090 ÿ0.9899 0.2897 ÿ0.5596 1.4933 0.5231

125 0.1731 ÿ0.9106 0.2645 ÿ0.5859 1.3831 0.5914

130 0.1403 ÿ0.8278 0.2372 ÿ0.5995 1.2608 0.6397

135 0.1108 ÿ0.7429 0.2082 ÿ0.6002 1.1299 0.6668

140 0.0847 ÿ0.6572 0.1783 ÿ0.5879 0.9937 0.6721

145 0.0606 ÿ0.5716 0.1484 ÿ0.5627 0.8562 0.6556

150 0.0495 ÿ0.4905 0.1179 ÿ0.5252 0.7169 0.6186
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the ratio G90=G0 increases about 25% for l � 1:93, r � 1:18, 30% for l � 5, r � ���
5
p

, in the region of

ÿ908 < c < ÿ338: The results show that, under mixed-mode loading in the region of ÿ908 < c < ÿ338,
G90=G0> 1 if br0: This suggests that if the fracture resistance along the sti�er material direction is the

lowest, kink is likely to occur along this direction. The variation of Gÿ90 with respect to c can be

obtained by simply replacing G90 by Gÿ90, ÿGÿ90, ÿ c by c: Similar conclusions can be made for

kinking along o � ÿ908 when c < 0: When crack orientation y0 � 458, the kinking along the sti�er

direction is controlled by G45: The variation of G45 with c for di�erent b is also shown in Fig. 4. The

material constants are l � 1:93, r � 1:18: G45=G0 > 1 when ÿ908 < c < ÿ208 and b > ÿ0:1: In this

case, kink is likely to take place along this sti�er direction. Fig. 4 indicates that the stability of the

kinked crack along o � 908 or 458 is controlled by the T-stress, that is, the negative T-stress can create

stable kinked crack along these directions and vice versa. If the T-stress of the main crack vanishes, the

stability is governed by the g-term.

The following calculations focus on AS4 carbon warp-knit fabric composites, designed by The Boeing

Table 11

Variation of coe�cients as a function of kinked angle o for orthotropic materials l � 1:93, r � 1:18, y0 � 908

o h11 h12 h21 h22 d1 d2 e

0 1 0 0 1 0 0 1

5 1.0103 ÿ0.2157 ÿ0.0939 0.9664 0.0032 0.0882 0.9737

10 1.0407 ÿ0.4167 ÿ0.1838 0.8669 0.0124 0.1692 0.8986

15 1.0899 ÿ0.5891 ÿ0.2658 0.7063 0.0263 0.2376 0.7852

20 1.1557 ÿ0.7202 ÿ0.3362 0.4919 0.0432 0.2905 0.6470

25 1.2351 ÿ0.7993 ÿ0.3919 0.2337 0.0617 0.3277 0.4968

30 1.3247 ÿ0.8182 ÿ0.4301 ÿ0.0562 0.0807 0.3508 0.3451

35 1.4203 ÿ0.7714 ÿ0.4488 ÿ0.3642 0.0994 0.3618 0.1991

40 1.5174 ÿ0.6567 ÿ0.4469 ÿ0.6757 0.1175 0.3632 0.0630

45 1.6115 ÿ0.4750 ÿ0.4241 ÿ0.9760 0.1348 0.3568 ÿ0.0610
50 1.6980 ÿ0.2306 ÿ0.3809 ÿ1.2508 0.1512 0.3443 ÿ0.1720
55 1.7725 0.0695 ÿ0.3188 ÿ1.4871 0.1669 0.3266 ÿ0.2695
60 1.8311 0.4154 ÿ0.2403 ÿ1.6735 0.1818 0.3046 ÿ0.3536
65 1.8705 0.7950 ÿ0.1483 ÿ1.8011 0.1960 0.2785 ÿ0.4241
70 1.8882 1.1945 ÿ0.0466 ÿ1.8637 0.2094 0.2488 ÿ0.4808
75 1.8823 1.5991 0.0608 ÿ1.8583 0.2219 0.2154 ÿ0.5234
80 1.8521 1.9937 0.1695 ÿ1.7847 0.2334 0.1786 ÿ0.5516
85 1.7977 2.3634 0.2751 ÿ1.6462 0.2438 0.1384 ÿ0.5651
90 1.7204 2.6944 0.3733 ÿ1.4489 0.2529 0.0950 ÿ0.5637
95 1.6220 2.9744 0.4602 ÿ1.2016 0.2606 0.0486 ÿ0.5475
100 1.5055 3.1932 0.5326 ÿ0.9156 0.2668 ÿ0.0007 ÿ0.5168
105 1.3743 3.3435 0.5878 ÿ0.6035 0.2715 ÿ0.0528 ÿ0.4718
110 1.2323 3.4205 0.6239 ÿ0.2795 0.2745 ÿ0.1077 ÿ0.4133
115 1.0840 3.4228 0.6401 0.0421 0.2759 ÿ0.1653 ÿ0.3417
120 0.9336 3.3518 0.6362 0.3469 0.2754 ÿ0.2257 ÿ0.2577
125 0.7855 3.2120 0.6133 0.6218 0.2730 ÿ0.2893 ÿ0.1617
130 0.6439 3.0108 0.5733 0.8547 0.2683 ÿ0.3561 ÿ0.0542
135 0.5121 2.7576 0.5188 1.0360 0.2609 ÿ0.4262 0.0643

140 0.3933 2.4638 0.4531 1.1585 0.2496 ÿ0.4993 0.1930

145 0.2896 2.1425 0.3801 1.2178 0.2293 ÿ0.5734 0.3313

150 0.2022 1.8029 0.3040 1.2132 0.2366 ÿ0.6576 0.4633
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Company, Long Beach for the all-composite wing skin in a commercial transport aircraft. Each layer of
fabric with ®ber volume content of 59.4% contains AS4 ®bers, 44% in the 08 direction, 44% in the
2458 directions, and 12% in the 908 direction. Layers of fabric are stacked and stitched together to
form the laminate. The resulting materials properties are:

EX � 5:22 Msi, EY � 10:4 Msi, EZ � 1:45 Msi

GXY � 2:54 Msi, GYZ � 0:64 Msi, GXZ � 0:57 Msi

Fig. 11. Ratio Gmax=G0 varies with the loading phase c for various values of the T-stress parameter b: (a) y0 � 08, (b)y0 � 458,
(c)y0 � 908, (d) values of oc�c� at which the energy release rate G�o�jT1�0 reaches the maximum values.
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nXY � 0:202, nXZ � nYZ � 0:49

The two nondimensional material parameters de®ned in Eq. (9.1) are

l � 1:93, r � 1:18

In order to obtain the e�ects of crack orientation of the main crack in the composite, three orientations
are chosen:

Fig. 12. Variation of coe�cients c3, b3, h3, d3, and e3 with the kink angle o for three orientations of the main crack, y0 � 08, 458,
and 908, in a composite with s 0yz=s

0
xz � 0:5:
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y0 � 0, the main crack perpendicular to the sti�er material Y-axis
y0 � p=4, the main crack inclined with 458 from the sti�er material Y-axis
y0 � p=2, the main crack parallel to the sti�er material Y-axis;

The values of cij, bi, hij, di, e, associated with in-plane deformation are presented in Figs. 5±7 for each
orientation of the main crack. The detailed numerical values of these coe�cients for selected kink angles
are given by Tables 3±5. In Figs. 8±10, the ratios G�o�=G0 are presented as functions of kink angle o
for various values of T-stress parameters, b, and loading mixity.

Fig. 13. Energy release rate ratio G3=G3,0 as a function of the kink angle o for various values of the T-stress parameter b3 for

three main crack orientations, y � 08, 458, 908, in a composite with s 0yz=s
0
xz � 0:5:
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Consider the case of y0 � 08 shown in Fig. 8, for mode-I loading, G reaches maximum value for all b
at o � 0: The positive T-stress increases the energy release rate and vice versa. The in¯uence of T-stress
on G increases with joj: For example, G=G0 at o � 908 increases 58% when b increases by 0.1. For
c � 58, G attains a maximum value at o � ÿ68, ÿ9:98, ÿ178 for b � ÿ0:1, 0, 0:1, respectively. The
positive b increases G and shifts Gmax to the negative direction of o and vice versa. For c � 458, the
e�ect of T-stress on G is very signi®cant. The positive b increases G in most of the region where the
kinked crack tip is open. Results show that the kinked crack tip is open in the range of o < 308: The

Fig. 14. Variation of the stress intensity factors k 01, k
0
2 and the energy release rate G at the kinked crack tip with kink angle o for

T1 � 0 and y0 � 08: The main crack is subjected to mode-I loading in a composite with l � 1:93, r � 1:18:
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values of G for the ranges of b studied has a maximum value around o � ÿ56:58: When loading is pure
mode-II, c � 908, the region where the kinked crack tip is open is o < 08: In the region around
o � ÿ748, G takes a maximum value.

In Fig. 9, when y0 � 458, the main crack is open in the loading range c < 80:758: For the mode-I
loading, c � 08, the kinked crack tip is open and k 01 > 0 in o > ÿ1208: The negative b reduces G�o� in
the open region and vice versa. The critical kink angles, oc, de®ned by the maximum energy release rate
occur at oc�08, 98, 208 for b � ÿ0:1, 0, 0:1 (see Tables 6±10). Under mixed-mode loading, c � 458, the
open region for kinked crack is o < 408 and the critical values for Gmax are in the range ÿ568 < oc <

Fig. 15. Variation of the stress intensity factors k 01, k
0
2 and the energy release rate G at the kinked crack tip with kink angle o for

a1 � ÿbjbj and y0 � 08: The main crack is subjected to mode-I loading in a composite with l � 1:93, r � 1:18:
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ÿ458 for values of b studied. In Fig. 10, T-stress also plays very important role in crack kinking for the
crack orientation, y0 � 908:

Fig. 11 shows the maximum energy release rate for the entire loading phase with three crack
orientations. The values of oc at which maximizes G�o� for b � 0 are also shown in Fig. 11(d). Note
that the value of Gmax for b 6�0 is in the neighborhood of oc: The actual Gmax is higher than that given
by the ®gure.

In the next set of Figs. 12 and 13, we consider the anti-plane deformation in an orthotropic material.
Fig. 12 shows the variation of c3, b3, h3, d3, e3 with kink angle for three main crack orientations in a
composite with s 0YZ=s

0
XZ � GZX=GYZ � 0:5: The energy release rate G3�o� for di�erent values of T-stress

parameter, b3, for the three crack orientations in the composite are illustrated in Fig. 13 which only

Fig. 16. Variation of the stress intensity factors k 01, k
0
2 and the energy release rate G at the kinked crack tip with kink angle o for

a1 � bjbj and y0 � 08: The main crack is subjected to mode-I loading in a composite with l � 1:93, r � 1:18:
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shows the ®rst two terms in the expression G3�o� of Eq. (7.33). For crack orientation parallel to the
material principal axes, the positive b3 increases Gmax and shifts the values to the negative values of o
and vice versa. For the unsymmetric crack orientation, y0 � 458, the positive b3 increases Gmax:

In the above Figs. 3±13, the terms with order a0 and
���
a
p

on the kink behavior are discussed. The
e�ect of higher-order terms with order a is shown from a set of Figs. 14±16. These ®gures show the
variation of the stress intensity factors, k 01, k

0
2 and energy release rate G at the kinked crack tip with o in

the AS4 fabric composite. The main crack with orientations y0 � 08 is subjected to mode-I loading.
These ®gures represent three cases: T1�0; T1g1R0; T1g1r0: They show the e�ects of higher-order terms
for di�erent combinations. These ®gures further provide information of the kink crack stability.

In summary, a kinking analysis for a crack in a generally anisotropic solid under two-dimensional
deformation has been performed. Based on Stroh formalism and a singular integral equation method,
the expressions of stress intensity factors, T-stress, energy release rate at the kinked tip in terms of k-
term, T-term, and g-term acting on the main crack prior to kinking has been formulated and calculated.
The e�ects of T-stress and the third term applied at the main crack ®eld on the kinking and stability of
the kinked crack are determined. The stability condition of the kinked crack has been developed based
on the energy release rate fracture criterion. The in¯uences of material anisotropy, crack orientation,
and load mixity on the crack kinking behavior are discussed in detail through many numerical results.
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