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Abstract

Solutions are presented for a crack kinking out of the crack plane in a generally anisotropic elastic body under
two-dimensional deformation. Based on Stroh formalism, a system of singular integral equations governing the
kinking crack with small kink length is given in a simple, straightforward form. The explicit expressions of the stress
intensity factors, 7T-stresses, and energy release rates at the kinked crack tip are presented in terms of some
nondimensional coefficients together with the stress intensity factors, 7-stresses, and the coefficients of the third term
acting on the main crack tip prior to crack kinking. The nondimensional coefficients depend on kink angle and
material constants, but not on kink length. The energy release rate ratio which may characterize the competition
along different crack growth directions is provided. The role of 7T-stresses and the third-term applied at the main
crack field are determined which can be significant in the kinking and the stability of the kinked crack. Based on the
energy release rate fracture criterion, the stability condition of the kinked crack is derived. The influences of
anisotropy and loading mixity on the implications of crack kinking behavior is also given. The results for
monoclinic materials with symmetry plane at x3; =0 are derived from general results. Numerical results for the
stress intensity factors, 7-stresses at the kinked acrack tip and the energy release rate ratio for some special cases
are provided. The dimensionless coefficients for crack kinking of orthotropic materials at the right angle to the main
crack plane are tabulated. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The direction of crack kinking can be one of the major factors in determining the residual strength of
the structural components. Therefore, proper prediction of the kinked direction upon crack initiation
and growth is of great importance in structural analysis. In order to assess whether the crack will extend
in the crack plane or advance by kinking out of the crack plane, the stress field near the kink tip and
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associated fracture parameters need to be quantified. Crack kinking analyses for isotropic materials have
been extensively carried out. Khrapkov (1971, 1998), Bibly and Cardew (1975) and Melin (1994), etc.
used the Mellin transform to obtain the stress intensity factors in front of the kinked tip for infinitesimal
kink. Using Muskhelishvili’s complex stress functions and perturbation methods, Banichuk (1970),
Gol’dstein and Salganik (1974), Cotterell and Rice (1980), etc. determined the stress intensity factors for
small kinked angle and infinitesimal kinks. Cotterell and Rice (1980) also considered the effect of the 7-
stress on the kinked stress intensity factors. Sumi et al. (1983) utilizing the perturbation technique and
an alternating method developed a solution for a finite geometry. Lo (1978), Hayashi and Nemat-Nasser
(1981), He and Hutchinson (1989) and He et al. (1991) calculated the stress intensity factors by the use
of singular integral methods with dislocations and identified the role of T-stress on the kinking behavior
in isotropic materials.

For anisotropic materials using Lekhnitskii’s formalism and dislocation technique, Miller and Stock
(1989) formulated the kinking problem in generally anisotropic materials using Lekhnitskii’'s complex
potential and calculated stress intensity factors for orthotropic materials under remote tension loading.
Obata et al. (1989) analyzed in-plane deformation and calculated stress intensity factors and energy
release rate at the kinked crack tip due to stress intensity factors of the main crack for orthotropic
materials, and Selvarathninam (1995) analyzed the crack kink behavior under uniform loading at
infinity in orthotropic materials. Gao and Chiu (1992) using the Stroh formalism obtained the
perturbation solution for infinitesimal kink and small kink angle under in-plane deformation. Suo et al.
(1991) obtained the stress intensity factors for orthotropic materials with kink angle normal to the crack
plane.

In this paper, the Stroh formalism of anisotropic elasticity combined with singular integral equation
approach are used to determine the stress intensity factors and energy release rate for arbitrary kink
angles including the effects of T-stress and the third-term. The stability condition of the kinked crack is
derived from the energy release rate fracture criterion. The T-stresses for the kinked crack in terms of
stress intensity factors and 7-stresses prior to thinking are also formulated.

2. General formulation for kinked crack tip field

The attention focuses on a kinked crack in an anisotropic elastic body under two-dimensional
deformation. Referring a fixed coordinate system x|, x,, x3, the strain—stress law is

e=s'c (2.1)
where
e =g ) ) q ) T —_ T
= [&15 €2, V235 V31> V12] » 0 = [011, 022, 023, 031, 012]

= [s;-] are reduced compliance coefficients defined by sl;- =55 —s3s;3/s33, (i, j, =1, 2,4, 5, 6).

Consider a crack with kink segment of length @ kinking out of the crack plane at an angle w in a
linear anisotropic body as shown in Fig. 1. When « is small compared with all in-plane geometric
lengths, including the length of the main crack, the parent crack is taken as semi-infinite and stresses
remotely asymptote to

Oyp = Z«/_ 0(13 (9 Sl]) + T](S“](Sm + T35a35/;1 + Z,/ i aﬁ 9 Sll + 0(}’ ) O'o,/g#0'33 (2.2)

where r and 6 are the cylindrical coordinate centered at the main crack tip; k = [k, ki, k3]T,
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T =[T1,0,75]", g =[g», g1, g3]" are stress intensity factors, T-stresses and real coefficients of the third
term (g-term) acting the main crack tip for a = 0. The 7-stress terms, 77 and T3, are constant stress
terms for a1, and o3 prior to kinking. ¢’, and rfy_[; depend on 0 and s; T and g depend on s, loading,
and geometry. In other words, for small a, the actual geometry of the cracked body and the applied
loads can be represented by the remote loading k, T, g, etc.. Here, k, T and g are known which have
been determined from the actual body geometry and loading (see Yang and Yuan, 1999). In what
follows, attention is focused on the case where the crack surfaces are traction free under remote loading
k, T and g. The stress field at the tip of the kinked crack is the classical field with conventional stress
intensity factors, k' = [k}, k{, kg]T and T-stresses, T’ = [T}, 0, T3’]T. Based on the linearity and
dimensional consideration, it can be shown that for small a, kK’ and T’ are related to the factors k, T,
and g applied at the parent crack tip when a = 0 by

k; cn 1 3 || ke b ba3 hy hy hy || &
Tl=1en en a3 || ki | +VaTy| by | +VaTs| bis | +a|l ha hn hs || @
ks 31 e || k3 b3 b33 hy hyr h || g3
+ 0(d?) (2.3)
Ti|_ 1 ]do dn di 22 Llen e T, +0(Ja) 2.4)
Ty | Valdn du ds k; e3; e || T3 ’

where the coefficients, c¢;;, by, hy, dj, and e;, are functions of w and si/j, O represents the other higher-
order terms.
The above expressions of k" and T’ can be derived from a system of integral equations governing the

kinked crack-tip field and the values of ¢;, by, hj, dj, and e; can be calculated by solving the integral

Fig. 1. A kinked crack with length ¢ emanating from the main crack with angle .
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equations (see later sections). For a monoclinic material with the symmetry plane at x3 = 0, the in-plane
deformation is separated from the anti-plane deformation. Therefore, Egs. (2.3) and (2.4) become:
For in-plane deformation,

ké Cyy 021 kz b21 h22 h21 g2i|
;| = T
[k1i| [6’12 011][k1}+ﬁ 1[511}+a[h12 hll][gl
T = (diky + diki)/va+en T (2.5)

For anti-plane deformation,

k3/ = C33k3 —+ \/(TZT}b?)?) + ah33g3

T = dysks/a+ enTs (2.6)

For in-plane deformation in isotropic materials, the values of ¢; and b;; can be calculated using an
integral equation method described by He and Hutchinson (1989). For the isotropic case, c¢; and b;
depend on w only, the values of ¢; are given by Hayashi and Nemat-Nasser (1981), He and Hutchinson
(1989) and Melin (1994), b;; by He et al. (1991). For in-plane deformation in anisotropic solids, Miller
and Stock (1989) and Obata et al. (1989) calculated c;. For orthotropic solids, c¢j(w = —n/2;s];) are
given by Suo et al. (1991).

In this paper, the Stroh formalism of anisotropic elasticity combined with integral equation approach
are used to determine the stress intensity factors for arbitrary kink angles including the effects of 7-
stresses and g-term on the stress intensity factors. As a first step, a system of integral equations
governing the kinked crack problem is constructed using a basic solution for a line dislocation
interacting with a semi-infinite crack. The basic solution may be obtained by superimposing the
following two solutions:

/
ii

(a) A solution for a line dislocation perpendicular to x| — x, plane in an infinite plane without crack;
(b) A disturbed solution due to the presence of the crack. For the solution, the opposite tractions
deduced by the line dislocations are applied to the crack surfaces.

To model the crack kinking behavior, the kinked segment of length a is replaced by a continuous
distribution of dislocations. The net tractions on the kinked surfaces resulting from distribution of the
dislocations and the remote loading should be zero. This results in a system of singular integral
equations.

3. Crack kinking analysis

In the Stroh formalism, the solution (a) for a line dislocation with Burgers vector b located at
(x10, X20) in an infinite plane without crack is given by

1
B(z) = 5Bz - z0))B g, (3.1

u = Re[AB~'@(z)] = %Re[A(ln(z - zo)>B*1qO] (3.2)
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t = [o11, 012, 013]'= —Re[@2], £ =[012, 022, 023]'=Re[D ] (3.3)
where
90 =1Lb

<11‘1(Z —20)) = diag[ln(21 = Z10), 11‘1(22 — 220), ln(23 — 230)]

Zy = X1+ PaX2, Zoo = X10 + PaX20 (3.4)

@ is the complex stress function or complex potential, p,, A, B are the Stroh eigenvalues and matrices
(Ting, 1996). They depend on elastic constants only. L = —2iBB" is a real, symmetric matrix. From Eq.
(3.1), the traction on the plane x> = 0 with unit normal [0, 1, 0] is

b(x)) = Re[di/(z)] . (3.52)

X =

1
®'(z) = 5_B( )B~'qq (3.5b)

zZ— 2

Here, the prime denotes the derivative with respect to the associated arguments.

The solution (b) is investigated next. Consider a semi-infinite crack located on plane x, =0 and x; <
0. The traction —t, from Eq. (3.5a) is applied on the lower crack surface and ¢, on the upper crack
surface. Solving this problem leads to a Hilbert equation. The derivative of the complex potential for
the semi-infinite crack with the prescribed tractions on the faces can be written, in Stroh formalism,

, 1 1—z0/z. 3 1 —/zp0/2
®'(2)= - B(—O/)B s Zmif’m 9 (3.6)
T zZ—2Z0 =1 Z—Zpo
Y; =B ‘BB (3.7)
where

I, =diag[1, 0, 0], I, =diag[0,1,0], I = diag[0,0, 1]

<1 - \/ZO/Z> _ diag|:1 —zio/z1 1 = /z0/z2 1 — vZ30/Zs]

b 2
zZ—20 Z1 — Z10 Z2 — 220 23— Z30

- - 2 - b -
Z —Zpo Z1 — Zpo Z2 — Zpo Z3 — Zpo

<1 —1/2/;0/z> _ diag|:1 — VZpln 1= Jiplz 1— 1/51,0/23}

Superimposing the two solutions, (3.5b) and (3.6), the derivative of the complex stress function and
displacement for the line dislocation interacting with the traction-free crack are given by
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1 1 ol o=z 1IN 1= /Zp0/z2
()= +P,.=—|B B! — B(— X - ) B(— Y "y )
() =@+ @7 = 7| B-——)B™' - 5B(— ) 2;< oz, V| B8
u =Re[AB~'@(z)] (3.8b)

where the subscripts 0 and 7 denote the solutions Egs. (3.5) and (3.6) for line dislocation and crack with
prescribed tractions, respectively. The expression for this fundamental solution @(z) is readily obtained
by integrating Eq. (3.8a) with respect to z.

The next step in the analysis involves the formulation of the kinked crack shown in Fig. 1. This is
accomplished by simulating the kinked segment by a continuous distribution of dislocations. It is
convenient to use the cylindrical coordinate system (r, 6, x3) where

x1 =rcos 0, X, =rsin 0

X10 = r'oCOS ), X0 =rosinw, 0<ryg<a
and r( is the distance from the origin to (x 9, X29)-
For a single line dislocation located at (xj(, x20) on the segment, the complex potential is given by

Eq. (3.8a) in which

z, = r(cos 0 + p,sin 0)

z,0 = ro(cos @ + pysin ), 0<ro<a (3.9)

Replacing ¢, by gp(ro)dro in Eq. (3.8a) and integrating with respect to ro from 0 to a, we get the
potential for the distributions of dislocation interacting with the crack given by the integral expansion

1[4 1 _ 1 1— Z()/Z _ 3 Z/;(]/Z
'z)=—| |B B! ——B(—Y"'"\B B( Y ; 1
@) = 5| (BB - 3B 22 PR aenan Ga0)

where g (7o) is the dislocation density.
For the crack kinking problem, the dislocation density gp(ro) is unknown. However, the unknown
function gp(r9) must lead to the traction-free condition along the kinked crack surfaces

t@'():w = (t](g) +t]§)|():w = 0, 0 <r<a (311)
where £y is the traction on 6 = constant, the superscripts (or subscripts) D and L denote the quantities

induced by the distribution of dislocations and the loading applied to the main crack, respectively.
The traction vector £y on a radial plane 6 = constant is given by

]
ty = Re[a—] (3.12)
or

Denote the complex potential for the main crack tip by @, under loading k, T, and g. Then
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& = @B(ﬁ)B-lk +B(z)B g, + %@B(zmw “lg+0(?) (3.13)

where T=—Re[B(p)B 'g,] and Re[g,] = 0.
From Egs. (3.10), (3.12) and (3.13)

1 (e 1 I | 1 1
2= :—J — = - = Re| B(———————)Y ro) dr 3.14
o =tolo=o =5 ol 7= T 2r U 2/; [ (er rroéﬁ/€> /{| gp(ro) dro (3.14)
1 2r
= Re[B(\/S)B |k — sin oT + ,/ —Re|B(c**)B~']g + O(+?) 3.15
) m [ <\/E> ] 7 [ () ]g ( )
where ¢, =cos @ + p,sin o, r = ,;xlz +x3, 0= /X% +x3.
Substituting Egs. (3.14) and (3.15) into Eq. (3.11) leads to
: r I + : I + : iRe B{ ! VY d
_ Z Z - - »
n)o | ro—r  2r4 /iy 2[;:1 r+./rrocp/s || ae o
1 2r
= ——Re[B(/) B! |k — sin oT + ,/ =Re[B(c*)B~']g + O(+*) 3.16

This is a system of singular integral equations for the dislocation density g () and it governs the crack
kinking problem. It is convenient to introduce the nondimensional variables x ant ¢ such that

r=a(4x), ro=a(1+10) (3.17)
2 2
Assume gp, has the form

201+ 01 = )4
qp = \/&
where ¢(7) is a unknown function bounded on —1<7<1 (Note that g(¢) has dimension of the stress

intensity factor), —1/2 and —s(w;s;;) are the stress singularity at the kink tip and the kink corner,
respectively. Then the integral equation (3.16) is written as

(3.18)

Jl | 1 |
+_
at=x 24 x 4+ /(00 +10)

13 1 q(t) di
2 ;R{ml e+ JAE AT 05 f‘} U+ 0G—-0"

= \/;(—ll——ﬂv)Re[B(\/E)Bl]k — JaTsin o + a,/ H_TXRG[B@yz)Bq]g (3.19)

Eq. (3.19) can be rewritten in a standard form
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1 1
J W —{—J K(x, yw()g(t) dt = fix), —1<x<1 (3.20)
—1 - -1

where the first integral on the left-hand side is the dominant part,

wt) =1+~ (-1 (3.21)

The matrix K(x, ¢) is the known function which contains the second and the third terms in the integrand
in Eq. (3.19), f(x) consists of the k-term, 7-term, g-term, etc.. The equation can be solved using different
numerical techniques as given by Erdogan et al. (1973), He and Hutchinson (1989) and Erdogan and
Gupta (1972). In these approaches, the unknown function ¢(f) is expanded in terms of Chebychev
polynomials or Jacobi polynomials with unknown coefficients. This results in a system of linear
algebraic equations for ¢(f). In this paper, a series of Chebychev polynomial is used, s = 1/2 and the
condition g(—1) =0 are imposed at the kinked corner. In calculation the series is truncated at (N +
Dth term (N = 120). Comparing the results with the existing results given by Melin (1994) and
Khrapkov (1998) for isotropic materials and Suo et al. (1991) for orthotropic materials, a very good
agreement has been achieved.

Since the integral equation is linear in ¢(z), the solution for ¢(z) can be obtained by superposition of
the solutions due to k-term, 7-term, and the other higher-order terms. From Eq. (3.19) or Eq. (3.20),
the solution ¢(7) can be expressed by

3
q(t) = kagh (1) + kg (1) + k3g\ (1) + VaTigP () + VaTsqP (1) + ay g (1)g: (3.22)
i=1

where the eight terms represent the contribution to ¢(¢) due to kj, ki, k3, T, T3, g; respectively. The

s1(1§erscripts (i), i = 1, 2, 3 denote the terms created by k-term, 7-term, and g-term, respectively. q(zl),
1

q,, qgl) can be obtained from solving integral equations

-
Va(l 4+ x)
by setting k =[1,0,0]", [0,1,0]" and [0,0, 1]" in Eq. (3.23), respectively, while q(lz) and qu) can be

calculated from solving the integral equation

J b ow(g(1)

1 =X

1 , 1
J lwftzqff) & +J K ow(ng(n) di = Re[B(VOB ™' Jk (3:23)

1
dr + J K(x, yw(t)q(t) dt = —/aTsin o (3.24)
_1

by choosing T =1, 0, 0]" and [0, 0, 1]T in Eq. (3.24), respectively. q(23), q(13), qg3) are determined from

1 1
J 0D g J K(x, ow(0g(r) dr = ay| T Re[B(2B g (3.25)
1 =X —1 n

with selecting g = [1, 0, 0]", [0, 1, 0]" and [0,0,1]", respectively.

The contributions to g(#) due to other higher-order terms can be determined in a similar procedure.
The solution of ¢(¢) can be used to calculate the stress intensity factors, 7-stresses, and energy release
rate as given in the following sections.

Note that the solution for the integral equations is valid if the crack surfaces are traction-free for
both the main crack and kinked crack. This requires that the crack surfaces are open. For the main
crack, the displacements due to the singular term are expressed by
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u= \/%Re[A(ﬁ>B—l I3 (3.26)

It follows that the crack opening displacement

Auy = up(r, m) — up(r, — M) = 2\/?[L1k]2 (3.27)

where [ ], denotes the second element of the vector inside the bracket. The open crack tip implies that
[L~'k],>0. Similarly, for the kinked crack, the traction-free condition on the crack tip requires

[L,'k'],>0 (3.28)

where L' is the matrix referred to the coordinate (x], x5, x}) system located at the kinked crack tip
shown in Fig. 1.

4. Stress intensity factors at the kinked tip

The stress intensity factors at the kink tip are defined by

00
k' = lim\/2n(r — a){ ogo , r>a 4.1)
930 0=w
Since
09 cosw sinw 0
oo = Q)| p—w> Q=| —-sinw cosw 0 4.2)
730 J oy, 0 0 1

k’can be expressed by
k' = lim/2n(r — a)Qtyly_,, = lim] vralx — 1)Qtylg_y, x> 1 (4.3)
r—a X—

It can be shown that as x—1, the contribution to kK’ only comes from the dominant term in the
expression of #y|y,_,, the limiting value can be evaluated using a technique given by Muskhelishvili
(1953) and

) o1t q(t) dt ng(1)
lim#ylo_,, = lim — - 44
ol ximl\/EL -1 +0'0-0" 2/alx=1 @
Hence
K=" 01) @5)

2.3‘
Once the numerical solutions q(zl), q(ll), qgl), q(lz), q(32), qf), q(13), and q(33) are known from (3.23)—(3.29),

according to Egs. (3.22) and (4.5), k' can be expressed in terms of k, T, and g in the form
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Kk cn ¢ 3 || ke by b3 hyn hay hys || &
ki |=|ca en cs || ki | +~aTi| by | +aTs| bis | +a| hia hin his || & (4.6)
ks cn 31 e || ks b3 b3 hy  h3t hi || &3
or
k' = ck + /abT + ahg 4.7
where
e ni{— [ (l)(l) q(ll)(l) qgl)(l)] (4.8)
bz] b23
N T
b=[b.0,b3]. by=|by |= fﬂqﬁ”(l), b= | by | =0 g (1), (4.9)
25 25
b31 b33
h— 7'[;‘/_ [ (3)(1) q(l3)(1) q(3)(1)] (4_10)

Following a similar manner, k' induced by other higher-order terms can be obtained.

5. T-stresses at the kinked tip

Referring to the coordinate system (xj, xj, xj) attached to the kinked tip shown in Fig. 1, the
asymptotic stress field near the tip is

Oop = o’g)ﬁ)( 0') 4+ T 15,104 + T 53,305 + o(Vr), OupF033 (5.1

where the superscript pr1me d es the quantltles referred to the (x|, xj, x3) system, ¢’ gﬂ) is the singular
term with a’(ﬁ?ocl/\/_ r'=\/x"2+x'3, r'cos 0'=x{, r'sin 0’ =x}.

By the definition of T-stresses
Ti=tim (o, =o' )lomo, 7= lim (oh —0"$) oo (5.2)

Note that the constant term of o1, is zero. Let o,,, 6,9, 0,3 be the cylindrical components of the stress on
r = constant. Then

o1 Ori
05 =| o , r>a (5.3)
I
931 J9=0 013 Jp=c»
Thus
T|= hm(ar, - 0 )|g s T} = 11m(0',3 — a,2 >|9 o 5.4)

where 0(0) and 0(0) are the leading terms of ¢,, and o¢,3, respectively. Because
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Grr cosO0 sinf 0
o | = Q0. Q)= | —sinf cosf 0
0,3 0 0 1

and

1 P
t,,:—R€|:i|, ¢:¢D+¢L
r a0

Finally, we have the expression, via Egs. (5.3), (5.5), (5.6) and (3.17)

[Grrs G105 3] oy = Q%)RG{B(p(w))B_IJII % dr
+;B<p(w)>31£1 14+ x4+ % &

+ ;J;B Ty s Dore a0 d x>
_\/ﬂllimB(p(w)\/E)B_lk + VaTcos o)

T Qo _1 ng(1)
[a’(‘?), o, aﬁg)] loeew = \(/E)Re|:B(p(w))B lgs\;lﬁ} x> 1

where

(p(w)) = diag[p1(), p2(w), p3(»)]

—sin w + pycos w
cos @ + p,sin @

Pa(®) = , Cy =COS® -+ p,sin w

From Eqgs. (5.4), (5.7) and (5.8),

T'=[T},0, T3’]T= Q((D){m _ Re[B(p(®)/S)B k] + /aTcos w}

\/E \/27'[
where
1
B e w(t)g(®) . mq(1)
m = ReBpont )3‘3‘1“_1 — wm}

b w(g(n)

1
-B B —/—2L ¢
TBe() J12+~/2(1+x) t

6645

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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Ly ()
+3 ;J_llﬂ )Y pw(t)g(r) diy (5.11)

24 /2(1 4+ t)gp/s

Eq. (5.10) provides the evaluation of T-stress from the radial stress at the front of the kinked tip (6’ =
0). With Egs. (5.10) and (3.22), T’ is related to k and T by the relation

T 1 dip di diz || ko er 0 ep3 T,
0 =7_ 0 0 0 ki |+10 0 0 0 (5.12)
T Wy dy dy || ks e31 0 es3 T3
or
T' = dk/Ja+eT
where

d = of[m. mD.m| - Re[B(p(w) /2B ]]
e= Q{[m(IZ), 0, m(32)] + [e1, 0, e3]cos w}

e =[1,0,0", e3=1[0,0,1]

mgl), m(ll), mg]), m(lz), m(32) are evaluated from Eq. (5.11) by choosing ¢(¢) :qgl), q(ll), qgl), q(lz), qu),

respectively.
For simplicity, Eq. (5.12) can be reduced to the form in Eq. (2.4). Note that the 7-stress can also be
calculated from the radial stress on the flanks of the kinked crack.

6. Energy release rate at the kinked tip

The energy release rate for the main crack extension in x-direction prior to kinking is

1 k|?
Go = G(0)] o = szL’lk = %nTL’ln (6.1)

a—0

where k = |k|n, n=[sin ¢ sin y, sin ¢ cos ¥, cos YI', k| = \/k3 +k} +k7,

ky ks
tan = cos ¢ ] (6.2)
n is the direction cosine of k in the (k», ki, k3) space. ¥ is a measure of relative magnitude of mode-II to
mode-I of the loading on the main crack; ¢ is the ratio of magnitude of mode-III to the norm of the
stress intensity factor at the main crack, L™'(= Re[iAB~']) is a tensor of rank two referred to (xi, x»,
X3) system,
The energy release rate of the crack kinking at 6 = w is

1
G(w) = Ek/ L)'k (6.3)
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where

L)' = Q)L™'Q%(w)
k' = ck + /abT + ahg (6.4)
From Egs. (6.3) and (6.4)
1
G(0) = SK"¢"L" (ck +2/abT + 2ahg) + gTTbTL;bT (6.5)

The ratio of the two energy release rates is obtained from Egs. (6.1) and (6.5) as

Gw) n"¢"L; (cn + 2bB + 2ha) + BHL BB

o w T (6.6)
where
T a a
ﬁ: |;€/|—:[ﬂ]>07 BS]Ta a:Wg':[OC],OQ, OC3]T-

The fracture criterion based on energy release rate may be stated as follows: the kinked crack will
propagate along the direction 0 = w if

G(CO) = GC(wa wl> ¢/) (67)

Here G(w) is the energy release rate which may be calculated from Eq. (6.5), G, is the experimentally-
determined fracture toughness which depends on the kink angle w and the loading phase angles, ', and
¢ of k'.

If crack is kinked at 6 = w, then it raises a critical question: Whether the kinked crack will tend to
arrest or grow further to damage the structure. Following the energy release rate fracture criterion, the
stability conditions of the kinked crack may be stated as

BGa(a)) < 0, kinked crack is stable
a
0G
a(aw) > 0, kinked crack is unstable (6.8)

This means that the kinked crack is stable if G(w) decreases with increases @, and the kinked crack is
unstable if G(w) increases as the crack grows (see He and Hutchinson, 1989). The dual condition of Egs.
(6.7) and (6.8) determines the kinking stability. From Eq. (6.5)

0G(w) _ [kI?

» 5 [n"c¢"L, (BB + 2ha) + BTBTL, BB + O(a’?)] (6.9)

Eq. (6.9) may be written in more useful form as

2 _
96(0) :%[nTCTL(;1<%+2h&)+BT,,TL;1,,Z,+O( a/,)} (6.10)
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where

~ - . 1T
B=IT i =[B1.0.5: ] . &=le/ il =[r. B, 351", (6.11)

[ is a characteristic length of the cracked body. For example, / can be taken as the main crack length; B
and a are nondimensional constant vectors which depend on the geometry of the cracked body and the
type of loading and are independent of the kinking length a and the loading magnitude. For mode-I
loading, f; is usually called a biaxial parameter. Then stability condition of the kinked crack (6.8) with
(6.10) becomes

_ bﬁ - ~T T
n'c'L! («/a_/l - 2hoc> +Bb'L,'BB <0 (6.12)
It is worth noting that the stability condition is independent of the loading magnitude. This is one of the
motives why b and k are calculated by this paper. f and a (or T and g) can be determined by using
path-independent integrals (see authors’ paper). Since a// <« 1, it follows from Eq. (6.12) that

n"¢"L>'bB <0 if bf=0(1) (6.13)

n'e'L;'ha <0 it b = o V/a/l) (6.14)

For other cases, bil = O(J/a/l), Eq. (6.12) has to be used. Eq. (6.13) covers many cases. However, note
that

b=0 atw=0
b=0w) atow<Kl

i}zO when T~ 0

In these cases, the stability condition is given by Eq. (6.14) or (6.12). Egs. (6.12)—(6.14) can be applied
to any kinked angle w if the kinked crack tip is open. If Eq. (6.13) or Eq. (6.14) can be applied, the
stability condition is independent of a/!.

7. Stress intensity factors, 7-stresses and energy release rate at the kinked tip in monoclinic material with
symmetry plane at x; =0

For general anisotropic materials, all three displacement components are coupled and depend on x;
and x, only. The components, ¢;(¢), ¢2(), and ¢3(¢) of dislocation density ¢(¢), have to be considered
simultaneously in the integral equation (3.19). However, for monoclinic materials with symmetry plane
at x3 =0, the in-plane deformations are decoupled from the anti-plane deformation, we may consider
the in-plane deformation and the antiplane deformation, respectively. In this case, explicit expressions of
B,B~!, and L~ are given by
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—-p —p2 0 | -1 —p> O
B=|1 1 0 |, B '= 1 p 0 (7.1)
o 0 -1 pr=rlo 0 p—p
Im(py +p2) Impipr) 0
L =g, | Mm@ Im[pipa(p+p2)] 0 (72)
-1
0 0 (,Usn)
where
~1/2
p= (S4yS5s — S45845) ! (7.3)
p1 and p; are the roots of
sppt = 25160 + (2515 + 566 )7 — 2536p + 55, = 0 (7.4)
with positive imaginary part; ps is the root of
stsp? — 2s4sp + S4y = 0, Im[ps] > O. (7.5)

With these expressions, the system of integral equations (3.19) reduces to the following a pair of integral
equations (7.6) for in-plane deformation and an integral equation (7.7) for anti-plane deformation:

Yl I 1 1
+5 +5) Re|B Y
L P=X " 214 x+/(+x)1+1) 2; e[ (1+x+\/(l+x)(l+t)§/;/g> /’}

q(t) dt
1+ —0"?

\/17) e[B \/E)B’l]k—\/&TsinahLa,/l;:xRe[B(gyz)B’l]gjLO(az) (7.6)

n(1
| | g3(1) dt
21+x+\/(1+x)(1+z T+ A+ 00+ 0570 | [+ 00 =07

_ _ - T4 xo (2
= mRe(@)k; JaTssinw + a . Re<g3 )g3 7.7

where g = [q1, 21", k = [k, k11", g = [g2, &u]"
Yy =B BB, p=1,2 (7.8)

B, Yg, I, Iy are 2 x 2 matrices obtained by deleting the third row and the third column in the
corresponding matrices (3.7). It is clear that ¢, ¢, are independent of k3 and T3, and ¢3 is independent
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of ky, ko, Ty, g1, g». In this case,

3 =cp3=cxn =c3 =0, byt =by=b3=0

hyy = hiz = h3 = h3; =0, dy=dyp=d; =0

e3=e3 =0

Therefore, the expressions of k' in Eq. (4.6) and T’ in Eq. (5.12) can be simplified.

7.1. In-plane deformation

(7.9)

The 3 x 3 matrices ¢, h, defined before reduce to 2 x 2 matrices; the matrices b and d reduce to two-

dimensional column and row vectors respectively; e reduces to a scalar. Thus

ké Cy 0] ko b, hy  hy &2
2l = T,
[kl} [m 611][k1}+ﬁ l[bl}ﬂ[/m hu}[gl]

_ thky +dik
R

Tl/ +eT)

or

k' =ck + /aTb + ahg

d'k
T{ZW—F@T]

where, for simplicity, we have introduced the notations:

b=I[by, 011", by=by, by =by,
d=ld,d]", dy=dy, d =dy,

e =eq1.

The energy release rates for the in-plane deformation lead to

1
G(©) = SK"¢"L; (e k+2VaTib + 2ah g) + ST LD

LI
Go = G(w)|w:0 = T’l L 'n

a—0
and the ratio

G@) _

E [nTcTL(gl(c n+26b + 2ha) + ﬂszLUjlb]/(nTL_ln)
0

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)
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where n=[sin , cos Y], tan y = ky/ky, k| =, [k + k3. In this case, fi3,; and o3y defined before reduces
to a scalar and a two-dimensional vector given by

JaT, ag
= R o= —
=" k]

= [a1, sz]T

The expressions are also valid for degenerated materials. For isotropic materials,

L 21 —v?)

I
() E

Therefore, we have

1 — 2
G() = ——[K¢" (ck + 2/aTib + 2ahg) + aT 5B (7.17)
? — n"c"(cn + 2Bb + 2ha) + 2b"b (7.18)
0

In the absence of k3, for in-plane deformation of monoclinic materials, the criterion (6.7) becomes
G(w) = G, §') (7.19)

where ' =tan~!(k;/k{) is the phase angle of k" and Eq. (6.10) yields

0G(@) _ | xoap i BB o\ a2
T L, m+2ha +BbL, b+0< a/l) (7.20)
The stability condition in Eq. (6.12) becomes
n"c'L! (ﬂ/! + 2h&> +BBTL;'b <0 (7.21)
a

Here, /~5 and a are given by [3 =VIT/|k|, a=lg/ k| = [, &] .
Eq. (7.21) can be simplified into

n"¢"L>'bp <0, if b= 0(1) (7.22)

n'¢"L'ha < 0, if b = o(‘/a/l) (7.23)
For mode-I,

[can, en 'Ly B < 0, if b = O(1) (7.24)

fear. en] "Ly o, b 30 < 0. if b = o(V/ayl) (7.25)

For mode-II,
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[c22, e 'L B < 0, if b = O(1) (7.26)

[¢22, Clz]TL(gl[hzz, h]z]T&z <0, if bB = 0(\/ a/l) (7.27)

For orthotropic materials, when the main crack line coincides with one material principal axis, it is easy
to prove that the following relations hold:

ci( —) = (=D ey(w), bi(—w)=(— 1D b(w),

hi( — o) = (= D hy@), d(—w)=(=D"d(@), e —o)=-ew) (7.28)

7.2. Anti-plane deformation

All matrices defined reduce to scalars. Therefore

ki = csks + /absTs + ahsgs (7.29)
dzks
1i= 0+ ol + 0@ (7.30)

where the following notations are used:
c3=c33, by=by, h3=h, dy=dy, e3=e33.

The energy release rates and its ratio for antiplane deformation are

Gi(w) = %];(03163 + 2/aTsbs 4 2alsg3) + %Tgbf (7.31)
k2
G\, = G3(w |w=0 =2 (732)
>0 3( )(1—>0 2,“
G
G3(w) =c3 (C3 + 2ﬁ3b3 + 20(3/13) + ﬁ32]732 (7.33)
3,0

Here, for convenience, 3 and o3 are redefined as By = i/aT3/k;. a3 = ag3/k; and u is invariant under
in-plane rotation. In isotropic materials, p is the shear modulus and the exact solution of ¢; has been
found (Wu, 1978)

_(l—w/n @2

Note that the integral equation for ¢3(z), Eq. (7.7), can be applied to isotropic case directly. Numerical
results from the integral equation are very close to the exact solution. For example, in the case of
o = /2, the relative difference is less than 0.07%.

For mode-III, from Eq. (7.31)
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da  2ul\Jajl

where B; and a3 are given by

9G3(@) _ Go ( Bs b+ 25500 + B bg) (7.35)

By = ITs/ks, &3 =lgs/ks (7.36)

The stability condition for kinked crack along 8 = @ under mode-III is

P
Vajl

which implies that

c3bs + 203¢3h3 + szf <0

Bshs <0 for Byhy = O(1)

azh; <0 for B3h3 = 0(\/a/l)

For orthotropic materials, when the main crack line coincides with one principal material axis, it is easy
to show the following relations:

by(—w) = =b3(w), c3(—w)=c3(w), h(—w)=h@), e(-w)=e(w) (7.37)

8. Crack kinking at right angle from the main crack plane in orthotropic materials

For materials that possess a plane having lower fracture toughness than other planes, crack may be
deflected towards such weak plane under favorable conditions. For example, the crack in a fiber
reinforced composite material, it is usually expected to grow parallel to the stiffer material direction. It
is interesting to describe the behavior of a parent crack in x;-direction turning into xj,-direction in
orthotropic materials. Here, we assume the coordinate axes (x;, x;, x3) coincide with principal material
axes. First consider the in-plane deformation. The Stroh eigenvalues, p; and p,, are roots of

sip® + (2515 + 566)p” +53, =0 8.1)
or
it +2pV0pr+1=0
where
! ! / 2
/’L:SA, p:M and 1 >0, —1<p<o0. (8.2)

! / !
51 V11522

These two parameters, A and p, were introduced by Suo et al. (1991). It is obvious that the
nondimensioanl coefficients, ¢, b;, hy, d;, e, associated with in-plane deformation depend on A and p for
o = /2. In order to extract explicitly the A-dependence of these coefficients, the x;-axis is scaled by

¢= Y4, (8.3)
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This scaling was first used by Suo et al. (1991) to get the explicit A-dependence of ¢;;, following a similar
argument, the A-dependence of b;, &, d;, e, can be given as follows for w = n/2,

L B A A A o) AM4bs A A |

[k{}_ r”gchz A Lk +aTi b e s |Le .4)
13/8 7% 1/8 7%

ry= Bt Ak e, (8.5)

Ja

where all the quantities with superscript “*’ which is function of p only can be calculated by solving the

integral equations with A=sj,/s3, = 1. ¢}, b;, hj, d}, and e* are tabulated in Tables 1 and 2.

Table 1
Variation of coefficients as a function of p for orthotropic materials with kink angle o = n/2

P ot T A & b b3

0.1 0.3984 —1.0696 0.3699 —-0.2215 1.8023 —0.2577
0.2 0.3948 —1.0860 0.3668 —0.2179 1.7958 —0.2486
0.3 0.3914 —1.1015 0.3639 —0.2147 1.7901 —0.2405
0.4 0.3882 —1.1162 0.3612 —0.2116 1.7850 —0.2332
0.5 0.3853 —1.1303 0.3586 —0.2088 1.7804 —0.2265
0.6 0.3824 —1.1437 0.3562 —0.2062 1.7763 —0.2205
0.7 0.3798 —1.1566 0.3539 —0.2038 1.7725 —0.2149
0.8 0.3772 —1.1690 0.3517 —0.2015 1.7690 —0.2098
0.9 0.3748 —1.1809 0.3496 —0.1993 1.7659 —0.2050
1.0 0.3725 —1.1925 0.3476 —0.1972 1.7629 —0.2006
1.1 0.3703 —1.2036 0.3457 —0.1953 1.7602 —0.1965
1.2 0.3681 —1.2144 0.3439 —0.1934 1.7577 —0.1926
1.3 0.3661 —1.2249 0.3421 —0.1917 1.7553 —0.1890
1.4 0.3641 —1.2350 0.3404 —0.1900 1.7531 —0.1856
1.5 0.3622 —1.2449 0.3388 —0.1884 1.7511 —0.1823
1.6 0.3604 —1.2545 0.3372 —0.1868 1.7491 —0.1793
1.7 0.3586 —1.2639 0.3357 —0.1853 1.7473 —0.1764
1.8 0.3569 —1.2730 0.3342 —0.1839 1.7456 —0.1736
1.9 0.3553 —1.2820 0.3328 —0.1825 1.7439 —0.1710
2.0 0.3536 —1.2907 0.3314 —0.1812 1.7424 —0.1685
2.5 0.3463 —1.3315 0.3251 —0.1753 1.7357 —0.1575
3.0 0.3398 —1.3685 0.3195 —0.1702 1.7303 —0.1486
3.5 0.3341 —1.4025 0.3145 —0.1658 1.7259 —0.1410
4.0 0.3289 —1.4339 0.3100 —0.1618 1.7222 —0.1346
4.5 0.3242 —1.4632 0.3059 —0.1584 1.7191 —0.1290
5.0 0.3199 —1.4908 0.3022 —0.1552 1.7164 —0.1240
5.5 0.3159 —1.5168 0.2987 —0.1523 1.7140 —0.1196
6.0 0.3122 —1.5414 0.2955 —0.1497 1.7119 —0.1157
6.5 0.3088 —1.5648 0.2925 —0.1473 1.7100 —0.1121
7.0 0.3056 —1.5872 0.2897 —0.1451 1.7083 —0.1089
7.5 0.3026 —1.6086 0.2870 —0.1430 1.7068 —0.1059
8.0 0.2997 —1.6291 0.2845 —0.1410 1.7054 —0.1032
8.5 0.2970 —1.6488 0.2821 —0.1392 1.7042 —0.1007
9.0 0.2945 —1.6678 0.2799 —0.1375 1.7030 —0.0984
9.5 0.2920 —1.6862 0.2778 —0.1359 1.7019 —0.0962

10.0 0.2897 —1.7039 0.2757 —0.1343 1.7009 —0.0941
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Comparing the values of ¢ provided in this paper with those of Suo et al. (1991) shows that the relative
differences are very minor. The values for isotropic materials, p = 1, are listed in the Tables 1 and 2.
The values of ¢; and b; given in this paper are almost identical to those given by Melin (1994) and
Khrapkov (1998), respectively. Because

L' =527 201 + p)diag[v7, 1] (8.6)
Ly = s5],27Y4/2(1 + p)diag|1, v/7] (8.7)

the energy release rate ratio from Eq. (7.16) leads to

Table 2
Variation of coefficients as a function of p for orthotropic materials with kink angle o = n/2

p Ity Ity I, I, di d3 ¢
0.1 1.0010 1.1865 0.3166 —1.1650 0.2154 0.0891 —0.7696
0.2 1.0170 1.2800 0.3135 —1.1845 0.2224 0.0928 —0.7714
0.3 1.0322 1.3713 0.3107 —1.2030 0.2289 0.0964 —0.7730
0.4 1.0466 1.4606 0.3080 —1.2206 0.2351 0.0997 —0.7745
0.5 1.0603 1.5481 0.3055 —1.2373 0.2409 0.1029 —0.7758
0.6 1.0735 1.6339 0.3032 —1.2533 0.2465 0.1060 —0.7771
0.7 1.0861 1.7183 0.3010 —1.2686 0.2518 0.1089 —0.7783
0.8 1.0982 1.8012 0.2988 —1.2833 0.2569 0.1117 —0.7794
0.9 1.1099 1.8829 0.2968 —1.2974 0.2618 0.1145 —0.7805
1.0 1.1212 1.9634 0.2949 —1.3111 0.2669 0.1178 —0.7812
1.1 1.1322 2.0428 0.2931 —1.3243 0.2711 0.1196 —0.7824
1.2 1.1427 2.1212 0.2914 —1.3371 0.2754 0.1221 —0.7833
1.3 1.1530 2.1986 0.2897 —1.3494 0.2797 0.1245 —0.7842
1.4 1.1630 2.2751 0.2881 —1.3614 0.2838 0.1268 —0.7850
1.5 1.1727 2.3507 0.2865 —1.3731 0.2877 0.1291 —0.7857
1.6 1.1821 2.4254 0.2850 —1.3845 0.2916 0.1313 —0.7865
1.7 1.1913 2.4995 0.2836 —1.3955 0.2953 0.1335 —0.7872
1.8 1.2003 2.5727 0.2822 —1.4063 0.2990 0.1355 —0.7879
1.9 1.2090 2.6453 0.2809 —1.4168 0.3025 0.1376 —0.7885
2.0 1.2175 2.7172 0.2796 —1.4270 0.3059 0.1396 —0.7891
2.5 1.2576 3.0675 0.2736 —1.4751 0.3220 0.1489 —-0.7919
3.0 1.2939 3.4046 0.2684 —1.5185 0.3364 0.1574 —0.7943
3.5 1.3272 3.7308 0.2638 —1.5582 0.3495 0.1651 —0.7963
4.0 1.3581 4.0474 0.2597 —1.5950 0.3615 0.1723 —0.7981
4.5 1.3868 4.3559 0.2559 —1.6293 0.3726 0.1790 -0.7997
5.0 1.4138 4.6571 0.2525 —1.6614 0.3830 0.1852 —0.8011
5.5 1.4393 4.9518 0.2493 —1.6917 0.3927 0.1911 —0.8023
6.0 1.4634 5.2407 0.2464 —1.7203 0.4019 0.1967 —0.8035
6.5 1.4863 5.5242 0.2437 —1.7476 0.4106 0.2019 —0.8045
7.0 1.5082 5.8029 0.2411 —1.7736 0.4188 0.2070 —0.8055
7.5 1.5292 6.0772 0.2387 —1.7984 0.4267 0.2118 —0.8064
8.0 1.5493 6.3473 0.2365 —1.8222 0.4342 0.2164 —0.8072
8.5 1.5686 6.6136 0.2343 —1.8451 0.4414 0.2208 —0.8080
9.0 1.5872 6.8763 0.2323 —1.8671 0.4483 0.2250 —0.8087
9.5 1.6051 7.1357 0.2304 —1.8884 0.4549 0.2291 —0.8094

10.0 1.6225 7.3919 0.2286 —1.9089 0.4613 0.2331 —0.8100
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Go
Go

= {/11/4(03‘3 + 3)sin?y + (3565, + cfyy)sin 20 + A7 V4(elF + 7 )cos Py + 2,8[/13/8 (b5¢5,
+ bicty)siny + A3 (b33, + bic}) )cos l,b] + 2(c5yh3, + €yl atasin 4 2274 (e5,h3,
+ ¢yl )ausin @ + (31, + ¢ Iy aacos W] + 2472 by + ¢ iy )dcos W
+ BN (b5 + b7?) }/(ﬂsinzlll + cos 21#) (8.3)

When the main crack is subjected to a predominantly mode-I loading, k| > 0, k&, = 0, from Eq. (8.8)

Goo _

Go AT + 57) + 282 (B33 + by ) + 20027 (S Sy + iy ) + BRATR (RS 4 B7)(8.9)

The first terms in Eqs. (8.8) and (8.9) representing the ratio when f =0 was given by Hutchinson and
Suo (1992). From Eq. (7.20), we have

9Go _ LI [ 'L (bﬁ + 2hi >+szTLwlb}

b~ 2 Jarl (8.10)

=90

which can be expanded as

G |k| / « x -
Ba% = s AT+ {J_z[’13/8(bzczz +bichy)sin g + 2175 (03¢5, + biciy )eos ‘p]

+2(c5, Iy + ¢yt )apsin
+24 7 [(5a3 + cishiy )ansin ¥ + (5,43, + ¢y iy ) acos Y ]

- ~2
+22712 (5 3y + ¢ Iy )acos Y+ BTAVA (b + b’fz)} (8.11)
The stability condition (7.21) becomes
o BB 2
|:nTcTLwl (ﬁ + 2ha> + B bTLwlbL 90< 0 (8.12)
In the range of 0 < p < 10, it can be proved from Tables 1 and 2 that all the coefficients of B, a1, o in
Eq. (8.11) or (8.12) are non-negative if <0, and Gyy decreases with iy when ¥ > 0, in general.

Therefore, for v = 90°, we consider ) <0. Egs. (8.11) and (8.12) can be simplified in the following two
cases:

B<0 if f=0() (8.13)

G 27V (3l + ot Ysim 27 (505, + €5 Jeos v |
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+&2[(c§2h§2 + oy )sin g + 274 (e3, i, + ¢y )cos lp] <0 iff= o( a/l) (8.14)
For mode-I, y = 0°

B<0 if f=o0()

& <0 ifﬁ:o(\/Z/_z)
For mode-II, y = —90°

B<0 ifp=o0(1)

iy <0 if p=o(\asl)

Making a similar argument, if w = —90° is the possible kink direction, { > 0 needs to be considered.
The expressions of G_gp and "g—j‘] have the same forms as those in the case w = 90°, but the values of c;;
and hf] should be taken at w = —90°.

For anti-plane deformation,

p3 =i\/84,/855 or p3= i/l;/z (8.15)
where
4
Az =—F>0. (8.16)
S5

For w =n/2, ¢33, b3, I}, d3, 5 are functions of 43 only. We scale the x-axis by
(=25 (8.17)
Making similar arguments as that for in-plane deformation, the 13-dependence on k3 and T3 is given as
k= 244 cths 4+ abiTs + al g (8.18)
25 d ks
Ja

where ¢}, b3, h}, d}, € are constants calculated from the corresponding integral equation, (7.7) with
A3 = 844/855 = 1 and given by

T} = + 2512y (8.19)

¢y =0.7594, b =-1.672, h;=-0.7312, dj=0.2334, ¢ =0.06423 (8.20)
The energy release rate ratio is

G390

c W22 42BN Dt + 2uz b + BRBY (8.21)
3,0
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XQA

Fig. 2. Crack orientation and principal material axes for a kinked crack.

9. Numerical results and discussion

In order to provide some insights and better understanding of the role of anisotropy in kinking
behavior, the following numerical results are limited to materials with orthotropic symmetry. Let X, Y,
and Z be the principal material axes and x;, x,, and x3 be the fixed coordinate axes. Assume xj3 is
coincident with Z. The main crack shown in Fig. 2 is lying along x, = 0 and x; < 0 and the crack plane
makes an angle 0y from the material X-axis. The angle 6y termed as crack orientation is considered to
be positive if counterclockwise. Since the in-plane and anti-plane deformations are decoupled, they will
be treated separately in this section.

First, we consider the in-plane deformation. Based on the previous analyses, the solutions, c;, b;, hy,
d;, and e for crack kinking will depend on six reduced compliances, s{;, 515, $55, Si¢> S5, and s¢, for an
arbitrary crack orientation, 6. In order to reduce the material parameters in the solutions, we introduce
two dimensionless parameters

! 25y +1/G
Syy o= ( syy +1/ XY) 9.1

2 / /
Syy 2\ SxxSyy

where s}y, S}y, and sy, are reduced compliances defined in the principal material coordinate system
(X, Y, Z). Then the solutions will depend on three parameters, 4, p, and 6y. To show the effect of the
crack orientation on crack kinking, we assume s}, /sy, > 1 without loss of generality. This means that
Y and X are along the stiffer and weaker principal material axes respectively. Thus, we can conclude
that the solutions under general mixed-mode loading will depend on w, 4, p, and 0y. For a given
material and 0o, solutions for the coefficients c;;, b;, hj, d;, e as a function of w can be computed from
the system of singular integral equations.

In observing crack kinking phenomenon for composites in laboratory experiments, the specimens are
usually conducted along the principal material axes under symmetric pure mode-I loading. Since small

M
N =

Fig. 3. (a) Variation of the stress intensity factors, k|, k and the energy release rate G at the kinked crack tip with the kink angle
o for various values of the 7-stress parameter § for two materials. The main crack with orientation §y = —5° is subjected to mixed
loading y = 5°. (b) Variation of the stress intensity factors, k{, k;, at the kinked crack tip with the kink angle w for different values
of the T-stress parameter 5 for three materials. The main crack with orientation 6y = 90° is subjected to mode-I loading ¥ = 0.
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Fig. 3 (continued)
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errors may arise from material misalignment (or crack orientation) and non-perfect loading locations are
sometimes unavoidable in the tests, it is interesting to analyze the kinking behavior of a small material
misalignment (or the main crack is aligned close to principal material orientation) under nearly mode-I
loading with a small component of mode-II present. To illustrate the effect of these imperfections
quantitatively on the kinking behavior, the main crack with orientation 6, = —5° and subjected to
mixed-mode loading phase y = tan~!(ky/k;) = 5° is investigated. Fig. 3(a) illustrates that stress intensity
factors ki, k}, and the energy release rate G(w) at the kinked crack tip vary with the kink angle o for

three values of the T-stress parameter, f = /aT)/|k|, for two materials. One material having 1 = 1.1

g
9
o

isotropic material

s'y /syyzl

[\

o Lo g

X

—
W
| RN RS

15
1
1 G9O /Go
Gy, /G, | 0.5
0.5
] 0]
0- ]
1 e 0 ]
0.5 ———— 0.5
-90 -60 -30 0 -90
2

1 6,=0° S /5 y=3

0_5_' -=- 01 —— 0.05
— 005 = 0.1
| 0 90=450 1 e 0
’ P e o o
-90 -60 -30 0 -90 - -
b4 v

Fig. 4. Energy release rate ratios, Goy/Go and Gus5/Gy, as functions of the loading phase i for various values of the 7-stress par-
ameter f§ for different degrees of anisotropy.



6662 S. Yang, F.-G. Yuan | International Journal of Solids and Structures 37 (2000) 6635-6682

and p = +/1.1 is considered to be nearly isotropic; the other has a high degree of anisotropy, 1 =5, p =
V5. In this figure and the sequel, only the first two terms in the expressions of k' and G(w), Eqs. (7.12)
and (7.16), are included. The effect of higher-order terms with order of a will be discussed later and the
figures will be shown in Figs. 14-16. k{, k5, and G are normalized by the absolute values, |k| and Gy,
respectively. Here |k| and Gy are the norm of the stress intensity factors and energy release rate at the
main crack tip prior to kinking. The 7-stress, 7', has important effect on ki, k;, and G(w). In the region

of —150° < w < 150°, numerical results indicate that the kinked crack tip is open at w < 140° for

1 -
] Ci1
0.5
] 021_ N,
0_ \'\.‘ ---------
22" _____________
'O'5f Cio
.14 ]
: -0.5
-L.5 t4—/—F""—F"TT 14—
0 50 100 150 0 50 100 150
Q) Q)

0 50 100 150

Fig. 5. Variation of coefficients c;;, b;, hjj, d;, and e with kink angle w for 0y = 0°. (The main crack is perpendicular to the stiffer ma-
terial axis of a composite with 1 = 1.93, p = 1.18).
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® ()
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2 1
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Fig. 6. Variation of coefficients c;;, b;, hy, d;, and e with kink angle w for 0y = 45°. (The main crack makes an angle of 45° with the
stiffer material axis of a composite with 2 = 1.93, p = 1.18).

Table 3
The coefficients as a function of selected w for 6y = 0 in AS4 composite

&) C11 12 €21 €22 bl bs dl d2 4] hll h12 h21 h22

n/4  0.7391 —0.9790 0.3888 0.5282  0.8094 —0.8315 0.0748 0.3685 0.2347 1.0166 —0.7467 0.0204 —0.6205
n/2 02880 —1.1166 0.3171 —0.2104 1.7582 —0.2279 0.2981 0.1556 —1.0880 0.7563 1.6455 0.2280 —1.2292
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Fig. 7. Variation of coefficients c;, b;, h;, d;, and e with kink angle o for 0y = 90°. (The main crack is parallel to the stiffer material

axis of a composite with 4 = 1.93, p = 1.18).

Table 4

The coefficients as a function of selected w for 6y = 45° in AS4 composite

@ €11 12 1 22 by by d d el hi hia h 2 h 2

—n/2 0.2628 1.2211 —0.3994 —-0.2596 1.7212 0.1548 0.2665 —0.2138 —0.7602 1.4279 —1.3346 —0.1918 —1.2807
—n/4 0.7606 1.0384 —0.3818  0.6091 0.8089  0.8284 0.1251 —0.3056  0.1887 1.3132 0.9844  0.2447 —0.4665
n/4 0.8113 —0.9381 0.2657 0.5038 0.8150 —0.8506 0.0816 0.4837 —0.0947 1.1036 —0.4680 0.0247 —0.8419
n/2  0.4806 —1.1263  0.2890 —0.1346 1.8304 —0.2773 0.2651 —0.0075 —0.7075 0.5912  2.2658  0.4189 —1.3166
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Table 5
The coefficients as a function of selected w for 6y = n/2 in AS4 composite

(&) (@) 12 21 2 by by dy dy 4] hi hia hyy has

n/4 0.8552 —1.0391 0.2509 0.6538 0.8160 —0.8450 0.1348 0.3568 —0.0610 1.6115 —0.4750 —0.4241 —0.9760
n/2 04716 —1.3161 0.3737 —0.1785 1.7582 —0.1641 0.2529 0.0950 —0.5637 1.7204  2.6944  0.3733 —1.4489

G/G,

0.5

0+
| | ' I I T |
-150 -75 0 75 150 -150 75 0 75 150
0] 0]
2
14 y=5° > 1 y=90°
G/G, ]
0.5
— -0.1
:' ° 0 :
g — 0.1
0 L
-150 75 0 75 150
0]

Fig. 8. Energy release rate ratio, G/Gjy as a function of the kink angle o for various values of loading phase i and the 7-stress par-
ameter . The main crack is perpendicular to the stiffer material axis (0y = 0°).
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p=1.1, and w < 110° for p =5 (estimated from the condition of opening crack tip, Eq. (3.28)) by
selecting 7 = 0. In both cases, the positive 77 (f > 0) increases k; in the region of interest, and reduces
the absolute value |kj| in the practically important region, —90° < w < 90°. In contrast, the negative 7-
stress (ff < 0) has opposite effect on k| and kj. As a result, the positive 7T-stress increases G(w) almost in
the whole region, especially in the region w <0 and shifts G, to the negative direction of .
Conversely, the negative T-stress reduces G in w < 0 and shifts Gy.x to the positive direction of w.
These effects become more significant with increase of material anisotropy. For the material with
stronger anisotropy, A =5, p =+/5, when |f| increases 0.05, Goo/Go can increase by 38%. Note that

2
14 y=0° ]
G/G,
0.5 y X
A —B_-0.1 :
4 0 K
— 0l
0 e
-150 -75 0 75 150

(V]

-150

Fig. 9. Energy release rate ratio, G/Gjy as a function of the kink angle o for various values of loading phase i and the 7-stress par-
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under prefect material alignment and pure mode-I loading for 6y = 0°, both the maximum values of
G(w) and k{(w) occur at @ = 0 and k;(w) = 0 when w = 0 exactly. In this example, let w. be the kinking
angle at which G(w), or k{(w) reaches maximum or kj(w) = 0, then the values of shifted w, due to the

imperfections are given below:

@) wclg=g,,, =—10°, Oclpi=o = —9.5°, Ocl ki by = -9.5°, fori=1.1,p=+1.1,=0

G/G,

0""'I""I“"I"':.
-150 75 0 75 150
0
14 w=5° 5
G/G, 1

0.5
K —E—-O.l
. .

—_ 0.1
0+ e
-150 275 0 75 150

0)

0.5

\|j=

o+

-150

-75 0 75 150
(V]

Fig. 10. Energy release rate ratio, G/Gy as a function of the kink angle o for various values of loading phase y and the T-stress
parameter 5. The main crack is perpendicular to the stiffer material axis (6y = 90°).
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max

(11) O‘)L"G:G = —50, U)c|k2/:0 = —50, w("'k],:kmax = —SO’ for A = 57 p = ﬁ, and ﬁ = —0.1
(iid) wclg=g,,, = —13°, Wclry=0 = —6.5°, Ocl k) mhiy = —6.5°, forl=5p=+/5 andf=0
=25, cliymo =8 Ocly/ty, =—9°, fori=5p=+5 andf=0.1

(iV) CUCIG:G

max

For the nearly isotropic materials (case (i)), the kinked angles predicted by the three fracture criteria,
maximum G, maximum k{, and k} = 0 are essentially identical in this case. However, in the case of high
degree of material anisotropy, the kinked angles predicted by the three criteria, in general, can be

drastically different for >0 and this measurable difference cannot be neglected.

Fig. 3(b) shows the variation of k{, kj with @ under f = —0.1,0,0.05 for three different degrees of

material anisotropy, A =3,4,5 and corresponding p = +~/2. The main crack is parallel to the

Table 6
Variation of coefficients as a function of kinked angle o for orthotropic materials 2 = 1.93, p = 1.18, y = 0°

stiffer

) ci ci2 21 (%) by by

0 1 0 0 1 0 0

5 0.9963 —0.1306 0.0557 0.9933 0.0121 —0.1386
10 0.9854 —0.2594 0.1104 0.9735 0.0482 —0.2733
15 0.9675 —0.3848 0.1631 0.9409 0.1071 —0.4003
20 0.9429 —0.5050 0.2128 0.8962 0.1872 —0.5160
25 09121 —0.6184 0.2587 0.8402 0.2862 —0.6173
30 0.8755 —0.7237 0.2999 0.7739 0.4013 —0.7014
35 0.8340 —0.8196 0.3357 0.6988 0.5393 —0.7660
40 0.7882 —0.9049 0.3655 0.6163 0.6666 —0.8097
45 0.7391 —-0.9790 0.3888 0.5282 0.8094 —0.8315
50 0.6874 —1.0410 0.4052 0.4362 0.9538 —0.8312
55 0.6342 —1.0907 0.4146 0.3424 1.0959 —0.8095
60 0.5803 —1.1280 0.4171 0.2488 1.2320 —0.7675
65 0.5267 —1.1530 0.4129 0.1573 1.3586 —0.7071
70 0.4742 —1.1661 0.4025 0.0699 1.4726 —0.6308
75 0.4235 —1.1682 0.3868 —0.0118 1.5714 —0.5416
80 0.3753 —1.1599 0.3665 —0.0862 1.6529 —0.4425
85 0.3300 —1.1424 0.3429 —0.1526 1.7155 —0.3369
90 0.2880 —1.1166 0.3171 —0.2104 1.7582 —0.2279
95 0.2494 —1.0837 0.2901 —0.2596 1.7804 —0.1185
100 0.2143 —1.0446 0.2628 —0.3005 1.7819 —0.0111
105 0.1825 —1.0002 0.2360 —0.3338 1.7632 0.0918
110 0.1540 —0.9513 0.2101 —0.3599 1.7248 0.1882
115 0.1285 —0.8986 0.1854 —0.3795 1.6678 0.2762
120 0.1059 —0.8426 0.1621 —0.3928 1.5933 0.3538
125 0.0860 —0.7840 0.1402 —0.4003 1.5032 0.4195
130 0.0684 —0.7232 0.1198 —0.4020 1.3993 0.4716
135 0.0523 —0.6603 0.1012 —0.3982 1.2842 0.5086
140 0.0494 —0.6005 0.0797 —0.3870 1.1529 0.5323
145 0.0321 —0.5328 0.0664 —0.3736 1.0248 0.5351
150 0.0208 —0.4613 0.0538 —0.3597 0.8908 0.5202
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material direction, 0y = 90°, and subjected to mode-I loading. It is shown that the variation of k, k} for
different T-stress levels is quite different. w,. is given by G(w.) = Gnax 18 @, = 0 for all cases (not shown

in the figure). But @, determined by k{(w) = (k{)max and kj(w) = 0 are listed below:

wc|k2/:0 =0, coc|k]«:kmx =0, fori=3,p=-0.1,0,0.05;

Welig=0 =0, @elrr—k

However,

Welry=o = 0°,220%,  @clg=

Table 7

max

=0,

max

forl=4and5, f = —0.1

= +20.5°,

fori=5,=0

Variation of coefficients as a function of kinked angle o for orthotropic materials 2 = 1.93, p = 1.18, 8, = 0°

w /111 ]112 /121 ]722 dl dz e

0 1 0 0 1 0 0 1

5 1.0008 —0.2162 —0.0068 0.9725 0.0009 0.0463 0.9899
10 1.0029 —0.4204 —0.0128 0.8913 0.0035 0.0921 0.9596
15 1.0062 —0.6012 —0.0172 0.7602 0.0079 0.1371 0.9097
20 1.0102 —0.7484 —0.0193 0.5851 0.0141 0.1809 0.8408
25 1.0143 —0.8531 —0.0184 0.3741 0.0221 0.2230 0.7536
30 1.0178 —0.9087 —0.0142 0.1370 0.0320 0.2633 0.6488
35 1.0199 —0.9104 —0.0064 —0.1154 0.0440 0.3013 0.5271
40 1.0198 —0.8562 0.0052 —0.3718 0.0581 0.3367 0.3889
45 1.0166 —0.7467 0.0204 —0.6205 0.0748 0.3685 0.2347
50 1.0095 —0.5847 0.0390 —0.8506 0.0940 0.3958 0.0654
55 0.9978 —0.3755 0.0606 —1.0521 0.1161 0.4168 —0.1173
60 0.9809 —0.1264 0.0844 —1.2167 0.1410 0.4293 —0.3099
65 0.9582 0.1535 0.1098 —1.3378 0.1685 0.4300 —0.5061
70 0.9296 0.4541 0.1358 —1.4114 0.1978 0.4153 —0.6961
75 0.8949 0.7645 0.1616 —1.4357 0.2277 0.3818 —0.8658
80 0.8542 1.0736 0.1861 —1.4113 0.2560 0.3270 —0.9982
85 0.8078 1.3706 0.2085 —1.3409 0.2803 0.2505 —1.0763
90 0.7563 1.6455 0.2280 —1.2292 0.2981 0.1556 —1.0880
95 0.7003 1.8893 0.2437 —1.0823 0.3075 0.0485 —1.0298
100 0.6407 2.0945 0.2550 —0.9069 0.3080 —0.0628 —0.9090
105 0.5784 2.2549 0.2616 —0.7109 0.3002 —0.1706 —0.7408
110 0.5147 2.3661 0.2629 —0.5021 0.2858 —0.2690 —0.5438
115 0.4507 2.4256 0.2590 —0.2889 0.2667 —0.3548 —0.3354
120 0.3876 2.4325 0.2498 —0.0794 0.2448 —0.4270 —0.1290
125 0.3266 2.3878 0.2356 0.1181 0.2214 —0.4864 —0.0665
130 0.2689 2.2945 0.2170 0.2961 0.1972 —0.5341 —0.2461
135 0.2154 2.1572 0.1945 0.4475 0.1709 —0.5712 0.4084
140 0.1670 1.9768 0.1693 0.5685 0.1767 —0.6128 0.5315
145 0.1247 1.7723 0.1421 0.6497 0.1374 —0.6290 0.6622
150 0.0887 1.5436 0.1141 0.6901 0.1178 —0.6541 0.7586
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Table 8
Variation of coeflicients as a function of kinked angle w for orthotropic materials A = 1.93, p = 1.18, 0y = 45°

0] il ci2 €1 &%) by by

—150 —0.0374 0.4387 —0.0192 —0.3943 0.7686 —0.5222
—145 —0.0415 0.5052 —0.0416 —0.4349 0.8993 —0.5530
—140 —0.0311 0.5770 —0.0645 —0.4697 1.0243 —0.5702
—135 —0.0212 0.6494 —0.0928 —0.4983 1.1481 —0.5700
—130 —0.0076 0.7229 —0.1248 —0.5184 1.2667 —0.5521
—125 0.0101 0.7968 —0.1598 —0.5285 1.3775 —0.5159
—120 0.0323 0.8700 —0.1967 —0.5273 1.4775 —0.4613
—115 0.0592 0.9415 —0.2346 —0.5137 1.5643 —0.3892
—110 0.0910 1.0098 —0.2723 —0.4873 1.6352 —0.3013
—105 0.1275 1.0734 —0.3086 —0.4480 1.6879 —0.1997
—100 0.1685 1.1307 —0.3425 —0.3964 1.7206 —0.0876
—-95 0.2138 1.1804 —0.3731 —0.3332 1.7320 0.0319
—-90 0.2628 1.2211 —0.3994 —0.2596 1.7212 0.1548
—85 0.3150 1.2514 —0.4210 —0.1769 1.6882 0.2774
—80 0.3697 1.2703 —0.4371 —0.0865 1.6333 0.3957
=75 0.4263 1.2770 —0.4474 0.0097 1.5578 0.5060
-70 0.4840 1.2707 —0.4517 0.1100 1.4635 0.6046
—65 0.5419 1.2510 —0.4498 0.2127 1.3527 0.6885
—60 0.5994 1.2178 —0.4417 0.3157 1.2284 0.7547
-55 0.6555 1.1711 —0.4275 0.4174 1.0938 0.8011
—50 0.7095 1.1111 —0.4074 0.5157 0.9527 0.8260
—45 0.7606 1.0384 —0.3818 0.6091 0.8089 0.8284
—40 0.8082 0.9538 —0.3510 0.6957 0.6664 0.8080
-35 0.8515 0.8583 —0.3156 0.7740 0.5293 0.7653
-30 0.8900 0.7529 —0.2763 0.8427 0.4013 0.7011
=25 0.9232 0.6392 —0.2336 0.9005 0.2862 0.6173
—-20 0.9508 0.5185 —0.1885 0.9464 0.1872 0.5161
—15 0.9724 0.3925 —0.1417 0.9797 0.1071 0.4004
—-10 0.9878 0.2629 —0.0941 0.9998 0.0482 0.2733
-5 0.9969 0.1315 —0.0465 1.0065 0.0121 0.1386
0 1 0 0 1 0 0

5 0.9970 —0.1298 0.0447 0.9806 0.0121 —0.1386
10 0.9884 —0.2561 0.0867 0.9490 0.0482 —0.2734
15 0.9745 —0.3775 0.1253 0.9063 0.1071 —0.4007
20 0.9558 —0.4926 0.1599 0.8539 0.1873 —0.5170
25 0.9328 —0.6001 0.1900 0.7933 0.2865 —-0.6196
30 0.9063 —0.6990 0.2155 0.7262 0.4022 —0.7058
35 0.8768 —0.7886 0.2364 0.6545 0.5311 —0.7738
40 0.8450 —0.8684 0.2530 0.5799 0.6699 —0.8223
45 0.8113 —0.9381 0.2657 0.5038 0.8150 —0.8506
50 0.7764 —0.9977 0.2753 0.4274 0.9629 —0.8582
55 0.7405 —1.0472 0.2824 0.3516 1.1097 —0.8454
60 0.7040 —1.0867 0.2874 0.2767 1.2519 —0.8126
65 0.6671 —1.1164 0.2909 0.2031 1.3860 —0.7608
70 0.6299 —1.1366 0.2930 0.1311 1.5088 —0.6913
75 0.5925 —1.1474 0.2939 0.0609 1.6170 —0.6057
80 0.5551 —1.1491 0.2936 —0.0071 1.7082 —0.5064
85 0.5178 —1.1419 0.2920 —0.0725 1.7799 —0.3960
90 0.4806 —1.1263 0.2890 —0.1346 1.8304 —0.2273
95 0.4438 —1.1025 0.2845 —0.1930 1.8583 —0.1537
100 0.4074 —1.0709 0.2784 —0.2468 1.8631 —0.0286
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Table 8 (continued)

0] i ci2 €1 o by by

105 0.3717 —1.0322 0.2706 —0.2955 1.8445 0.0944
110 0.3367 —0.9869 0.2612 —0.3383 1.8031 0.2120
115 0.3027 —0.9356 0.2501 —0.3747 1.7398 0.3207
120 0.2698 —0.8790 0.2373 —0.4041 1.6563 0.4174
125 0.2380 —0.8179 0.2231 —0.4260 1.5547 0.4993
130 0.2075 —0.7531 0.2074 —0.4401 1.4376 0.5641
135 0.1776 —0.6850 0.1906 —0.4459 1.3082 0.6096
140 0.1757 —0.6212 0.1683 —0.4424 1.1574 0.6367
145 0.1308 —0.5449 0.1528 —0.4324 1.0205 0.6390
150 0.1055 —0.4706 0.1345 —0.4150 0.8729 0.6205
Table 9

Variation of coefficients as a function of kinked angle w for orthotropic materials 4 = 1.93, p = 1.18, 6y = 45°

w hiy hi2 hat hy dy d e

—150 0.3489 —1.3924 —0.2828 0.6851 0.0857 0.7781 0.7372
—145 0.4362 —1.6068 —0.3246 0.6554 0.1026 0.7280 0.5720
—140 0.5298 —1.7965 —0.3611 0.5858 0.1653 0.6670 0.3467
—135 0.6293 —1.9588 —0.3904 0.4754 0.2092 0.5783 0.1064
—130 0.7326 —2.0848 —0.4108 0.3275 0.2455 0.4723 —0.1340
—125 0.8376 —2.1679 —0.4211 0.1468 0.2730 0.3578 —0.3537
—120 0.9421 —2.2026 —0.4204 —0.0596 0.2909 0.2435 —0.5364
—115 1.0437 —2.1853 —0.4080 —0.2830 0.3001 0.1363 —0.6738
—110 1.1399 —2.1141 —0.3841 —0.5130 0.3019 0.0406 —0.7645
—105 1.2285 —1.9895 —0.3492 —0.7387 0.2979 —0.0418 —0.8124
—100 1.3072 —1.8143 —0.3044 —0.9488 0.2899 —0.1110 —0.8234
-95 1.3742 —1.5936 —0.2513 —1.1326 0.2791 —0.1678 —0.8040
-90 1.4279 —1.3346 —0.1918 —1.2807 0.2665 —0.2138 —0.7602
-85 1.4673 —1.0463 —0.1182 —1.3851 0.2527 —0.2503 —0.6966
—80 1.4918 —0.7393 —0.0630 —1.4401 0.2381 —0.2788 —0.6170
-75 1.5016 —0.4250 0.0013 —1.4421 0.2229 —0.3001 —0.5242
-70 1.4970 —0.1154 0.0622 —1.3904 0.2073 —0.3149 —0.4205
—65 1.4793 0.1778 0.1173 —1.2866 0.1913 —0.3238 —0.3081
—60 1.4500 0.4435 0.1645 —1.1348 0.1750 —0.3272 —0.1889
-55 1.4109 0.6716 0.2023 —0.9416 0.1585 —0.3251 —0.0649
-50 1.3645 0.8540 0.2292 —0.7155 0.1418 -0.3179 0.0617
—45 1.3132 0.9844 0.2447 —0.4665 0.1251 —0.3056 0.1887
—40 1.2596 1.0590 0.2485 —0.2059 0.1085 —0.2886 0.3139
-35 1.2063 1.0764 0.2409 0.0545 0.0922 —0.2670 0.4349
=30 1.1557 1.0379 0.2230 0.3028 0.0764 —0.2411 0.5496
=25 1.1099 0.9475 0.1960 0.5276 0.0611 —0.2111 0.6561
-20 1.0707 0.8113 0.1619 0.7187 0.0466 —0.1770 0.7526
—15 0.0396 0.6378 0.1228 0.8671 0.0331 —0.1390 0.8373
-10 0.0174 0.4370 0.0811 0.9661 0.0207 —0.0970 0.9083
-5 0.0042 0.2204 0.0393 1.0111 0.0096 —0.0507 0.9634

(continued on next page)
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Table 9 (continued)

w /11 1 /112 hz] /122 (11 d2 e

0 1 0 0 1 0 0 1

5 1.0039 —-0.2119 —0.0344 0.9333 —0.0076 0.0554 1.0144
10 1.0145 —0.4033 —0.0619 0.8139 —0.0127 0.1154 1.0022
15 1.0302 —0.5633 —0.0806 0.6471 —0.0146 0.1795 0.9580
20 1.0488 —0.6822 —0.0893 0.4405 —0.0125 0.2463 0.8766
25 1.0680 —0.7523 —0.0872 0.2030 —0.0053 0.3133 0.7533
30 1.0855 —0.7680 —0.0741 —0.0549 0.0076 0.3762 0.5868
35 1.0987 —0.7260 —0.0504 —0.3225 0.0269 0.4294 0.3813
40 1.1054 —0.6254 —0.0170 —0.5884 0.0520 0.4670 0.1481
45 1.1036 —0.4680 0.0247 —0.8419 0.0816 0.4837 —0.0947
50 1.0916 —0.2577 0.0730 —1.0727 0.1136 0.4771 —0.3255
55 0.0681 —0.0009 0.1255 —1.2715 0.1453 0.4480 —0.5247
60 0.0326 0.2945 0.1801 —1.4304 0.1745 0.4003 —0.6789
65 0.9847 0.6186 0.2342 —1.5429 0.1998 0.3395 —0.7827
70 0.9249 0.9604 0.2855 —1.6042 0.2205 0.2711 —0.8380
75 0.8540 1.3082 0.3315 —1.6116 0.2369 0.1997 —0.8507
80 0.7735 1.6496 0.3702 —1.5645 0.2493 0.1284 —0.8285
85 0.6852 1.9726 0.3998 —1.4649 0.2585 0.0590 —0.7786
90 0.5912 2.2658 0.4189 —1.3166 0.2651 —0.0075 —0.7075
95 0.4941 2.5187 0.4268 —1.1260 0.2695 —0.0709 —0.6199
100 0.3964 2.7226 0.4230 —0.9010 0.2723 —0.1312 —0.5197
105 0.3008 2.8705 0.4077 —0.6513 0.2736 —0.1888 —0.4097
110 0.2097 2.9577 0.3817 —0.3876 0.2734 —0.2436 —0.2923
115 0.1257 2.9820 0.3463 —0.1213 0.2719 —0.2959 —0.1696
120 0.0506 2.9435 0.3030 0.1364 0.2688 —0.3455 —0.0435
125 —0.0139 2.8448 0.2540 0.3744 0.2641 —0.3923 0.0837
130 —0.0664 2.6908 0.2014 0.5827 0.2573 —0.4361 0.2101
135 —0.1064 2.4888 0.1479 0.7527 0.2466 —0.4760 0.3340
140 —0.1325 1.2377 0.0956 0.8790 0.2917 —0.5265 0.4261
145 —0.1480 1.9729 0.0477 0.9527 0.2380 —0.5497 0.5533
150 —0.1512 1.6830 0.0059 0.9746 0.2248 —0.5812 0.6506

Oclpmo = 07,4197, ool g, = £23°, for 2 =4, f=0.05

=kmax

= +32°, fori=>5, f=0.05

Kmax

wc|k2’:() = Oo’izgo’ wc'|k1’:

In the above three cases, k} =0 provides three solutions for w, and ki|,_y becomes local minimum
shown in the figure. If the g-term is included in the calculation, a similar characteristic still remains. The
value of ki|,—, being the local minimum for strong material anisotropy was observed by Gao and Chiu
(1992) based on a perturbation solution and f = 0. Because the fracture resistance at w = 0 (along the
stiffer direction) is, in general, lower compared with other directions, based on the energy release rate
criterion, the crack extension will usually take place at G(w)|,—o = G.. Since b = 0 at w = 0, the stability
condition of the kinked crack tip is controlled by the g-term according to Eq. (7.25).
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Table 10
Variation of coeflicients as a function of kinked angle w for orthotropic materials A = 1.93, p = 1.18, 6y = 90°
0] il ci2 1 &%) by by
0 1 0 0 1 0 0
5 0.9982 —0.1307 0.0267 0.9960 0.0121 —0.1387
10 0.9930 —0.2603 0.0537 0.9839 0.0482 —0.2737
15 0.9842 —0.3877 0.0812 0.9634 0.1072 —0.4014
20 0.9718 —0.5116 0.1094 0.9342 0.1875 —0.5185
25 0.9557 —0.6310 0.1380 0.8960 0.2871 —0.6216
30 0.9360 —0.7446 0.1669 0.8487 0.4031 —0.7080
35 0.9126 —0.8513 0.1956 0.7922 0.5323 —0.7752
40 0.8856 —0.9498 0.2238 0.7271 0.6712 —0.8213
45 0.8552 —1.0391 0.2509 0.6538 0.8160 —0.8450
50 0.8214 —1.1182 0.2764 0.5733 0.9626 —0.8457
55 0.7846 —1.1863 0.2997 0.4865 1.1070 —0.8234
60 0.7450 —1.2426 0.3205 0.3948 1.2452 —0.7790
65 0.7030 —1.2866 0.3384 0.2994 1.3735 —0.7137
70 0.6590 —1.3180 0.3530 0.2019 1.4883 —0.6297
75 0.6134 —1.3365 0.3640 0.1038 1.5864 —0.5295
80 0.5666 —1.3422 0.3712 0.0066 1.6654 —0.4162
85 0.5192 —1.3352 0.3745 —0.0880 1.7231 —0.2931
90 0.4716 —1.3161 0.3737 —0.1785 1.7582 —0.1641
95 0.4243 —1.2854 0.3690 —0.2635 1.7697 —0.0329
100 0.3778 —1.2438 0.3603 —0.3415 1.7577 0.0965
105 0.3326 —1.1924 0.3478 —0.4112 1.7226 0.2203
110 0.2892 —1.1321 0.3317 —0.4715 1.6655 0.3348
115 0.2478 —1.0641 0.3122 —0.5213 1.5883 0.4368
120 0.2090 —0.9899 0.2897 —0.5596 1.4933 0.5231
125 0.1731 —0.9106 0.2645 —0.5859 1.3831 0.5914
130 0.1403 —0.8278 0.2372 —0.5995 1.2608 0.6397
135 0.1108 —0.7429 0.2082 —0.6002 1.1299 0.6668
140 0.0847 —0.6572 0.1783 —0.5879 0.9937 0.6721
145 0.0606 —0.5716 0.1484 —0.5627 0.8562 0.6556
150 0.0495 —0.4905 0.1179 —0.5252 0.7169 0.6186

that is, if g < 0, the kinked crack is stable and vice versa.

0 <0 atw=0

For fiber reinforced composites, a dominant crack tends to deflect into the stiffer material direction. It
is assumed that the stiffer material orientation coincides with principal material Y-axis. If the crack is
perpendicular to the stiffer direction, 6y = 0°, the kinking along the stiffer direction can be described by
Gy = G(0)| =90 OF G_99 = G(w)|,—_g9- Three figures presented in Fig. 4 provide Ggy/Gy as a function of
loading phase { for a variety of T-stress levels described by f for two anisotropic materials. For
comparison purposes, the case of isotropic materials is also shown. The two anisotropic materials have
material constants: 2 = 1.93, p = 1.18; and 1 =5, p = +/5. Clearly, the positive f§ increases Ggy and vice
versa regardless of the loading phase. Gyy reaches maximum around the loading phase angle = —66°
for the two anisotropic materials, iy = —69° for isotropic materials. When the value of f increases 0.1,
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Table 11
Variation of coeflicients as a function of kinked angle w for orthotropic materials A = 1.93, p = 1.18, 6y = 90°

0] hiy hiz ha hy dy dy e

0 1 0 0 1 0 0 1

5 1.0103 —0.2157 —0.0939 0.9664 0.0032 0.0882 0.9737
10 1.0407 —0.4167 —0.1838 0.8669 0.0124 0.1692 0.8986
15 1.0899 —0.5891 —0.2658 0.7063 0.0263 0.2376 0.7852
20 1.1557 —0.7202 —0.3362 0.4919 0.0432 0.2905 0.6470
25 1.2351 —0.7993 —0.3919 0.2337 0.0617 0.3277 0.4968
30 1.3247 —0.8182 —0.4301 —0.0562 0.0807 0.3508 0.3451
35 1.4203 —0.7714 —0.4488 —0.3642 0.0994 0.3618 0.1991
40 1.5174 —0.6567 —0.4469 —0.6757 0.1175 0.3632 0.0630
45 1.6115 —0.4750 —0.4241 —0.9760 0.1348 0.3568 —0.0610
50 1.6980 —0.2306 —0.3809 —1.2508 0.1512 0.3443 —0.1720
55 1.7725 0.0695 —0.3188 —1.4871 0.1669 0.3266 —0.2695
60 1.8311 0.4154 —0.2403 —1.6735 0.1818 0.3046 —0.3536
65 1.8705 0.7950 —0.1483 —1.8011 0.1960 0.2785 —0.4241
70 1.8882 1.1945 —0.0466 —1.8637 0.2094 0.2488 —0.4808
75 1.8823 1.5991 0.0608 —1.8583 0.2219 0.2154 —0.5234
80 1.8521 1.9937 0.1695 —1.7847 0.2334 0.1786 —0.5516
85 1.7977 2.3634 0.2751 —1.6462 0.2438 0.1384 —0.5651
90 1.7204 2.6944 0.3733 —1.4489 0.2529 0.0950 —0.5637
95 1.6220 2.9744 0.4602 —1.2016 0.2606 0.0486 —0.5475
100 1.5055 3.1932 0.5326 —0.9156 0.2668 —0.0007 —0.5168
105 1.3743 3.3435 0.5878 —0.6035 0.2715 —0.0528 —0.4718
110 1.2323 3.4205 0.6239 —0.2795 0.2745 —0.1077 —0.4133
115 1.0840 3.4228 0.6401 0.0421 0.2759 —0.1653 —0.3417
120 0.9336 3.3518 0.6362 0.3469 0.2754 —0.2257 —0.2577
125 0.7855 3.2120 0.6133 0.6218 0.2730 —0.2893 —0.1617
130 0.6439 3.0108 0.5733 0.8547 0.2683 —0.3561 —0.0542
135 0.5121 2.7576 0.5188 1.0360 0.2609 —0.4262 0.0643
140 0.3933 2.4638 0.4531 1.1585 0.2496 —0.4993 0.1930
145 0.2896 2.1425 0.3801 1.2178 0.2293 —0.5734 0.3313
150 0.2022 1.8029 0.3040 1.2132 0.2366 —0.6576 0.4633

the ratio Goy/Gy increases about 25% for 4 =1.93, p = 1.18, 30% for 2 =5, p = /5, in the region of
—90° <y < —33°. The results show that, under mixed-mode loading in the region of —90° <y < —33°,
Goy/Go > 1 if f>0. This suggests that if the fracture resistance along the stiffer material direction is the
lowest, kink is likely to occur along this direction. The variation of G_gy with respect to i can be
obtained by simply replacing Goy by G_99, —G_99, — ¥ by V. Similar conclusions can be made for
kinking along w = —90° when ¥ < 0. When crack orientation 0, = 45°, the kinking along the stiffer
direction is controlled by Gus. The variation of Gss with  for different f is also shown in Fig. 4. The
material constants are A =193, p =1.18. G45/Gy > 1 when —90° <y < —20° and S > —0.1. In this
case, kink is likely to take place along this stiffer direction. Fig. 4 indicates that the stability of the
kinked crack along w = 90° or 45° is controlled by the T-stress, that is, the negative T-stress can create
stable kinked crack along these directions and vice versa. If the 7-stress of the main crack vanishes, the
stability is governed by the g-term.

The following calculations focus on AS4 carbon warp-knit fabric composites, designed by The Boeing
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Company, Long Beach for the all-composite wing skin in a commercial transport aircraft. Each layer of
fabric with fiber volume content of 59.4% contains AS4 fibers, 44% in the 0° direction, 44% in the
+45° directions, and 12% in the 90° direction. Layers of fabric are stacked and stitched together to
form the laminate. The resulting materials properties are:

Ey =522 Msi, Ey=104 Msi, Ez=1.45 Msi

GXY =2.54 MSi, GYZ =0.64 MSi, GXZ = 0.57 Msi

3 3
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Fig. 11. Ratio Gax/Go varies with the loading phase y for various values of the 7-stress parameter f5: (a) 0y = 0°, (b)fy = 45°,
(©)0o = 90°, (d) values of w.(}) at which the energy release rate G(w)|r,—o reaches the maximum values.
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Vyy = 0202, Vxz =Vyz = 0.49
The two nondimensional material parameters defined in Eq. (9.1) are

2=193, p=1.18

In order to obtain the effects of crack orientation of the main crack in the composite, three orientations
are chosen:

0,=0°

T

24— 24+-——r——————————

-150 -75 0 75 150 -150 -75 0 75 150
w Q)]

Fig. 12. Variation of coefficients c3, b3, 13, d3, and ez with the kink angle w for three orientations of the main crack, 6y = 0°, 45°,
and 90°, in a composite with s;_/s;. = 0.5.
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0y = 0, the main crack perpendicular to the stiffer material Y-axis
0y = n/4, the main crack inclined with 45° from the stiffer material Y-axis
0y = m/2, the main crack parallel to the stiffer material Y-axis;

The values of ¢, b;, hy, d;, e, associated with in-plane deformation are presented in Figs. 5-7 for each
orientation of the main crack. The detailed numerical values of these coefficients for selected kink angles
are given by Tables 3-5. In Figs. 8-10, the ratios G(w)/Gy are presented as functions of kink angle w
for various values of 7-stress parameters, f5, and loading mixity.

2 2
- By=
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Fig. 13. Energy release rate ratio G3/Gsp as a function of the kink angle @ for various values of the 7-stress parameter f5; for
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Consider the case of 6y = 0° shown in Fig. 8, for mode-I loading, G reaches maximum value for all
at w = 0. The positive T-stress increases the energy release rate and vice versa. The influence of T-stress
on G increases with |w|. For example, G/Gy at o = 90° increases 58% when f increases by 0.1. For
Y =5° G attains a maximum value at w = —6°, —9.9°, —17° for = —0.1,0, 0.1, respectively. The
positive f§ increases G and shifts Gn,x to the negative direction of w and vice versa. For yy = 45°, the
effect of T-stress on G is very significant. The positive f increases G in most of the region where the
kinked crack tip is open. Results show that the kinked crack tip is open in the range of w < 30°. The

1 0.4
K'/k| | k'y/[k|
0.5 0.2
o,=
—L 004
| 0
] — -0.04
0 +r—— -7
0 0 50 100 150
()

Fig. 14. Variation of the stress intensity factors ki, k5 and the energy release rate G at the kinked crack tip with kink angle o for
T} =0 and 0y = 0°. The main crack is subjected to mode-I loading in a composite with 1 = 1.93, p = 1.18.
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values of G for the ranges of f§ studied has a maximum value around w = —56.5°. When loading is pure
mode-II, y =90°, the region where the kinked crack tip is open is @ < 0°. In the region around
w = —74°, G takes a maximum value.

In Fig. 9, when 6, = 45°, the main crack is open in the loading range < 80.75°. For the mode-I
loading, i = 0°, the kinked crack tip is open and k{ > 0 in w > —120°. The negative  reduces G(w) in
the open region and vice versa. The critical kink angles, @., defined by the maximum energy release rate
occur at w,=0°, 9°, 20° for f = —0.1, 0, 0.1 (see Tables 6-10). Under mixed-mode loading, iy = 45°, the
open region for kinked crack is w < 40° and the critical values for Gy, are in the range —56° < w, <

T
0 50 100 150
®

Fig. 15. Variation of the stress intensity factors ki, k5 and the energy release rate G at the kinked crack tip with kink angle o for
o = —p|p| and Oy = 0°. The main crack is subjected to mode-I loading in a composite with 1 = 1.93, p = 1.18.
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Fig. 16. Variation of the stress intensity factors k|, k; and the energy release rate G at the kinked crack tip with kink angle w for
o = B|p| and 6y = 0°. The main crack is subjected to mode-I loading in a composite with 2 = 1.93, p = 1.18.

—45° for values of f§ studied. In Fig. 10, 7-stress also plays very important role in crack kinking for the
crack orientation, 0y = 90°.

Fig. 11 shows the maximum energy release rate for the entire loading phase with three crack
orientations. The values of w, at which maximizes G(w) for f =0 are also shown in Fig. 11(d). Note
that the value of G, for f#0 is in the neighborhood of w.. The actual G,y is higher than that given
by the figure.

In the next set of Figs. 12 and 13, we consider the anti-plane deformation in an orthotropic material.
Fig. 12 shows the variation of c¢3, b3, h3, d3, e3 with kink angle for three main crack orientations in a
composite with s}.,/s%, = Gzx/Gyz = 0.5. The energy release rate Gz(w) for different values of T-stress
parameter, f5;, for the three crack orientations in the composite are illustrated in Fig. 13 which only



S. Yang, F.-G. Yuan | International Journal of Solids and Structures 37 (2000) 6635-6682 6681

shows the first two terms in the expression Gs(w) of Eq. (7.33). For crack orientation parallel to the
material principal axes, the positive f; increases Gnax and shifts the values to the negative values of
and vice versa. For the unsymmetric crack orientation, 0y = 45°, the positive fi; increases Gax.

In the above Figs. 3-13, the terms with order a° and /a on the kink behavior are discussed. The
effect of higher-order terms with order « is shown from a set of Figs. 14-16. These figures show the
variation of the stress intensity factors, ki, k; and energy release rate G at the kinked crack tip with w in
the AS4 fabric composite. The main crack with orientations 6y = 0° is subjected to mode-I loading.
These figures represent three cases: 77 =0; 712, <0; T1g; >0. They show the effects of higher-order terms
for different combinations. These figures further provide information of the kink crack stability.

In summary, a kinking analysis for a crack in a generally anisotropic solid under two-dimensional
deformation has been performed. Based on Stroh formalism and a singular integral equation method,
the expressions of stress intensity factors, T-stress, energy release rate at the kinked tip in terms of k-
term, 7-term, and g-term acting on the main crack prior to kinking has been formulated and calculated.
The effects of T-stress and the third term applied at the main crack field on the kinking and stability of
the kinked crack are determined. The stability condition of the kinked crack has been developed based
on the energy release rate fracture criterion. The influences of material anisotropy, crack orientation,
and load mixity on the crack kinking behavior are discussed in detail through many numerical results.
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